Javad Mohammadpour, Fatemeh Salehi, Vikram Garaniya, Til Baalisampang, Ehsan Arzaghi, Ross Roberts, Gio Cervella, Jason Newport, Peter Hughes, Rouzbeh Abbassi
{"title":"Computational analysis of air bubble-induced frictional drag reduction on ship hulls","authors":"Javad Mohammadpour, Fatemeh Salehi, Vikram Garaniya, Til Baalisampang, Ehsan Arzaghi, Ross Roberts, Gio Cervella, Jason Newport, Peter Hughes, Rouzbeh Abbassi","doi":"10.1007/s00773-024-01016-0","DOIUrl":null,"url":null,"abstract":"<p>About 60% of marine vessels’ power is consumed to overcome friction resistance between the hull and water. Air lubrication can effectively reduce this resistance and lower fuel consumption, and consequently emissions. This study aims to analyze the use of a gas-injected liquid lubrication system (GILLS) to reduce friction resistance in a real-world scenario. A 3D computational fluid dynamics model is adopted to analyse how a full-scale ship (the Sea Transport Solutions Designed Catamaran ROPAX ferry) with a length of 44.9 m and a width of 16.5 m is affected by its speed and draught. The computational model is based on a volume of fluid model using the k-ꞷ shear stress transport turbulence model. Results show that at a 1.5 m draught and 20 knots cruising speed, injecting 0.05 kg/s of compressed air into each GILLS unit reduces friction resistance by 10.45%. A hybrid model of natural air suction and force-compressed air shows a friction resistance reduction of 10.41%, which is a promising solution with less required external power. The proposed technique offers improved fuel efficiency and can help to meet environmental regulations without engine modifications.</p>","PeriodicalId":16334,"journal":{"name":"Journal of Marine Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marine Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00773-024-01016-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
About 60% of marine vessels’ power is consumed to overcome friction resistance between the hull and water. Air lubrication can effectively reduce this resistance and lower fuel consumption, and consequently emissions. This study aims to analyze the use of a gas-injected liquid lubrication system (GILLS) to reduce friction resistance in a real-world scenario. A 3D computational fluid dynamics model is adopted to analyse how a full-scale ship (the Sea Transport Solutions Designed Catamaran ROPAX ferry) with a length of 44.9 m and a width of 16.5 m is affected by its speed and draught. The computational model is based on a volume of fluid model using the k-ꞷ shear stress transport turbulence model. Results show that at a 1.5 m draught and 20 knots cruising speed, injecting 0.05 kg/s of compressed air into each GILLS unit reduces friction resistance by 10.45%. A hybrid model of natural air suction and force-compressed air shows a friction resistance reduction of 10.41%, which is a promising solution with less required external power. The proposed technique offers improved fuel efficiency and can help to meet environmental regulations without engine modifications.
期刊介绍:
The Journal of Marine Science and Technology (JMST), presently indexed in EI and SCI Expanded, publishes original, high-quality, peer-reviewed research papers on marine studies including engineering, pure and applied science, and technology. The full text of the published papers is also made accessible at the JMST website to allow a rapid circulation.