On the Immersed Boundary Method with Time-Filter-SAV for Solving Fluid–Structure Interaction Problem

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-06-27 DOI:10.1007/s10915-024-02591-5
Qixing Chen, Li Cai, Feifei Jing, Pengfei Ma, Xiaoyu Luo, Hao Gao
{"title":"On the Immersed Boundary Method with Time-Filter-SAV for Solving Fluid–Structure Interaction Problem","authors":"Qixing Chen, Li Cai, Feifei Jing, Pengfei Ma, Xiaoyu Luo, Hao Gao","doi":"10.1007/s10915-024-02591-5","DOIUrl":null,"url":null,"abstract":"<p>In this work, the immersed boundary method with time filter and scalar auxiliary variable techniques is studied to solve the fluid–structure interaction problems. For the fluid flow, we first use the backward Euler differentiation formula in temporal discretization, we then employ the time filter technique to improve its convergence order, the scalar auxiliary variable strategy is visited to decouple the fluid equations and achieve fast solutions. We adopt the immersed boundary method to build the connection between the fluid and the structure, as well as characterize the deformations of the structure. We approximate the fluid–structure interaction model by the finite element method in space. The semi-discrete and fully-discrete implicit numerical schemes are proposed followed with unconditionally stability properties. We carry out several numerical experiments to validate the convergence behaviors and efficiency of the algorithms.\n</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02591-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, the immersed boundary method with time filter and scalar auxiliary variable techniques is studied to solve the fluid–structure interaction problems. For the fluid flow, we first use the backward Euler differentiation formula in temporal discretization, we then employ the time filter technique to improve its convergence order, the scalar auxiliary variable strategy is visited to decouple the fluid equations and achieve fast solutions. We adopt the immersed boundary method to build the connection between the fluid and the structure, as well as characterize the deformations of the structure. We approximate the fluid–structure interaction model by the finite element method in space. The semi-discrete and fully-discrete implicit numerical schemes are proposed followed with unconditionally stability properties. We carry out several numerical experiments to validate the convergence behaviors and efficiency of the algorithms.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用时间滤波-SAV沉浸边界法解决流固耦合问题
本文研究了采用时间滤波和标量辅助变量技术的沉浸边界法求解流固耦合问题。对于流体流动,我们首先使用后向欧拉微分公式进行时间离散,然后采用时间滤波技术提高其收敛阶次,并采用标量辅助变量策略解耦流体方程,实现快速求解。我们采用沉浸边界法建立流体与结构之间的联系,并表征结构的变形。我们采用有限元法在空间近似计算流固耦合模型。提出的半离散和全离散隐式数值方案具有无条件的稳定性。我们进行了多次数值实验,以验证算法的收敛行为和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1