Enhanced Gene Selection in Single-Cell Genomics: Pre-Filtering Synergy and Reinforced Optimization

Weiliang Zhang, Zhen Meng, Dongjie Wang, Min Wu, Kunpeng Liu, Yuanchun Zhou, Meng Xiao
{"title":"Enhanced Gene Selection in Single-Cell Genomics: Pre-Filtering Synergy and Reinforced Optimization","authors":"Weiliang Zhang, Zhen Meng, Dongjie Wang, Min Wu, Kunpeng Liu, Yuanchun Zhou, Meng Xiao","doi":"arxiv-2406.07418","DOIUrl":null,"url":null,"abstract":"Recent advancements in single-cell genomics necessitate precision in gene\npanel selection to interpret complex biological data effectively. Those methods\naim to streamline the analysis of scRNA-seq data by focusing on the most\ninformative genes that contribute significantly to the specific analysis task.\nTraditional selection methods, which often rely on expert domain knowledge,\nembedded machine learning models, or heuristic-based iterative optimization,\nare prone to biases and inefficiencies that may obscure critical genomic\nsignals. Recognizing the limitations of traditional methods, we aim to\ntranscend these constraints with a refined strategy. In this study, we\nintroduce an iterative gene panel selection strategy that is applicable to\nclustering tasks in single-cell genomics. Our method uniquely integrates\nresults from other gene selection algorithms, providing valuable preliminary\nboundaries or prior knowledge as initial guides in the search space to enhance\nthe efficiency of our framework. Furthermore, we incorporate the stochastic\nnature of the exploration process in reinforcement learning (RL) and its\ncapability for continuous optimization through reward-based feedback. This\ncombination mitigates the biases inherent in the initial boundaries and\nharnesses RL's adaptability to refine and target gene panel selection\ndynamically. To illustrate the effectiveness of our method, we conducted\ndetailed comparative experiments, case studies, and visualization analysis.","PeriodicalId":501070,"journal":{"name":"arXiv - QuanBio - Genomics","volume":"104 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.07418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advancements in single-cell genomics necessitate precision in gene panel selection to interpret complex biological data effectively. Those methods aim to streamline the analysis of scRNA-seq data by focusing on the most informative genes that contribute significantly to the specific analysis task. Traditional selection methods, which often rely on expert domain knowledge, embedded machine learning models, or heuristic-based iterative optimization, are prone to biases and inefficiencies that may obscure critical genomic signals. Recognizing the limitations of traditional methods, we aim to transcend these constraints with a refined strategy. In this study, we introduce an iterative gene panel selection strategy that is applicable to clustering tasks in single-cell genomics. Our method uniquely integrates results from other gene selection algorithms, providing valuable preliminary boundaries or prior knowledge as initial guides in the search space to enhance the efficiency of our framework. Furthermore, we incorporate the stochastic nature of the exploration process in reinforcement learning (RL) and its capability for continuous optimization through reward-based feedback. This combination mitigates the biases inherent in the initial boundaries and harnesses RL's adaptability to refine and target gene panel selection dynamically. To illustrate the effectiveness of our method, we conducted detailed comparative experiments, case studies, and visualization analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单细胞基因组学中的强化基因选择:预过滤协同作用和强化优化
单细胞基因组学的最新进展要求对基因组进行精确选择,以有效解读复杂的生物数据。传统的选择方法通常依赖于专家领域知识、嵌入式机器学习模型或基于启发式的迭代优化,这些方法容易产生偏差和低效,可能会掩盖关键的基因组学信号。认识到传统方法的局限性,我们希望通过一种改进的策略来超越这些限制。在这项研究中,我们介绍了一种适用于单细胞基因组学中聚类任务的迭代基因面板选择策略。我们的方法独特地整合了其他基因选择算法的结果,提供了有价值的初步边界或先验知识作为搜索空间的初始指南,从而提高了我们框架的效率。此外,我们还结合了强化学习(RL)中探索过程的随机性,以及通过基于奖励的反馈进行持续优化的能力。这种结合减轻了初始边界中固有的偏差,并利用 RL 的适应性动态地完善和锁定基因面板选择。为了说明我们方法的有效性,我们进行了详细的对比实验、案例研究和可视化分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Allium Vegetables Intake and Digestive System Cancer Risk: A Study Based on Mendelian Randomization, Network Pharmacology and Molecular Docking wgatools: an ultrafast toolkit for manipulating whole genome alignments Selecting Differential Splicing Methods: Practical Considerations Advancements in colored k-mer sets: essentials for the curious Advancements in practical k-mer sets: essentials for the curious
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1