Kakasaheb Y. Nandiwale, Robert P. Pritchard, Cameron T. Armstrong, Steven M. Guinness and Kevin P. Girard
{"title":"Automated self-optimization of continuous crystallization of nirmatrelvir API†","authors":"Kakasaheb Y. Nandiwale, Robert P. Pritchard, Cameron T. Armstrong, Steven M. Guinness and Kevin P. Girard","doi":"10.1039/D4RE00272E","DOIUrl":null,"url":null,"abstract":"<p >Continuous flow crystallization is an attractive mode of operation, due to its ability to generate consistent product quality while requiring a smaller footprint and lower production costs than its batch counterpart. We present a novel combination of a custom/in-house automated continuous crystallization platform integrated with self-optimization algorithms. We demonstrate the automated optimization of continuous crystallization of nirmatrelvir (PF-07321332), one of the active ingredients in Paxlovid™, a potent, selective, and orally bioavailable inhibitor of SARS-CoV-2 M<small><sup>pro</sup></small>. The continuous crystallization platform consists of three mixed suspension mixed product removal (MSMPR) crystallizers in series and includes an in-house designed automation user interface integrated with lab equipment. The platform also has an iterative design of experiments (DoE) based on mixed-integer nonlinear programming (MINLP) self-optimization algorithms. We implement automated controls for the lab equipment, including a flow sonication cell as the nucleation device, feed pumps, temperature controller units (TCUs), thermocouples, pressure sensors, stirrers, and coriolis mass flow meters. We enable integration of variety of <em>in situ</em> process analytical technologies (PATs) <em>via</em> open platform communications unified architecture (OPC UA), including Mettler Toledo ParticleTrack™ with FBRM® (Focused Beam Reflectance Measurement) technology and Blaze™ Metrics imaging probe for the data visualization and real time process understanding.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 9","pages":" 2460-2468"},"PeriodicalIF":3.4000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/re/d4re00272e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Continuous flow crystallization is an attractive mode of operation, due to its ability to generate consistent product quality while requiring a smaller footprint and lower production costs than its batch counterpart. We present a novel combination of a custom/in-house automated continuous crystallization platform integrated with self-optimization algorithms. We demonstrate the automated optimization of continuous crystallization of nirmatrelvir (PF-07321332), one of the active ingredients in Paxlovid™, a potent, selective, and orally bioavailable inhibitor of SARS-CoV-2 Mpro. The continuous crystallization platform consists of three mixed suspension mixed product removal (MSMPR) crystallizers in series and includes an in-house designed automation user interface integrated with lab equipment. The platform also has an iterative design of experiments (DoE) based on mixed-integer nonlinear programming (MINLP) self-optimization algorithms. We implement automated controls for the lab equipment, including a flow sonication cell as the nucleation device, feed pumps, temperature controller units (TCUs), thermocouples, pressure sensors, stirrers, and coriolis mass flow meters. We enable integration of variety of in situ process analytical technologies (PATs) via open platform communications unified architecture (OPC UA), including Mettler Toledo ParticleTrack™ with FBRM® (Focused Beam Reflectance Measurement) technology and Blaze™ Metrics imaging probe for the data visualization and real time process understanding.
期刊介绍:
Reaction Chemistry & Engineering is a new journal reporting cutting edge research into all aspects of making molecules for the benefit of fundamental research, applied processes and wider society.
From fundamental, molecular-level chemistry to large scale chemical production, Reaction Chemistry & Engineering brings together communities of chemists and chemical engineers working to ensure the crucial role of reaction chemistry in today’s world.