{"title":"Spatial resolution measurement method for 3D displays from contrast modulation","authors":"Tae Hee Lee, Young Ju Jeong","doi":"10.1007/s10055-024-01026-8","DOIUrl":null,"url":null,"abstract":"<p>Augmented Reality 3D head-up displays use a autostereoscopic 3D display as a panel. The 3D optical unit of autostereoscopic 3D displays controls the direction of the light rays in each pixel, allowing the users enjoy 3D world without glasses. However, these 3D optics cause image quality degradation. Deterioration of resolution has a serious impact on 3D image quality. Therefore, it is important to properly measure the 3D resolution according to 3D optics and analyze its impact. In this study, a method for measuring spatial resolution in 3D displays using contrast modulation is proposed. We describe a conventional 2D resolution measurement methods that are standardized. Based on the existing 2D resolution methods, we propose a 3D resolution method. The spatial and frequency signal responses of 3D displays were investigated. The first method is determined by the predominant frequency series. The second method is conducted by contrast modulation. Through experiments with 3D displays, 3D resolution was measured using the proposed method, and the relationship between the parameters and resolution of 3D optics was examined.</p>","PeriodicalId":23727,"journal":{"name":"Virtual Reality","volume":"154 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virtual Reality","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10055-024-01026-8","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Augmented Reality 3D head-up displays use a autostereoscopic 3D display as a panel. The 3D optical unit of autostereoscopic 3D displays controls the direction of the light rays in each pixel, allowing the users enjoy 3D world without glasses. However, these 3D optics cause image quality degradation. Deterioration of resolution has a serious impact on 3D image quality. Therefore, it is important to properly measure the 3D resolution according to 3D optics and analyze its impact. In this study, a method for measuring spatial resolution in 3D displays using contrast modulation is proposed. We describe a conventional 2D resolution measurement methods that are standardized. Based on the existing 2D resolution methods, we propose a 3D resolution method. The spatial and frequency signal responses of 3D displays were investigated. The first method is determined by the predominant frequency series. The second method is conducted by contrast modulation. Through experiments with 3D displays, 3D resolution was measured using the proposed method, and the relationship between the parameters and resolution of 3D optics was examined.
增强现实 3D 抬头显示器使用自动立体 3D 显示器作为面板。自动立体 3D 显示器的 3D 光学单元可控制每个像素的光线方向,让用户无需佩戴眼镜就能享受 3D 世界。然而,这些 3D 光学元件会导致图像质量下降。分辨率下降会严重影响 3D 图像质量。因此,根据 3D 光学技术正确测量 3D 分辨率并分析其影响非常重要。本研究提出了一种利用对比度调制测量 3D 显示器空间分辨率的方法。我们介绍了标准化的传统 2D 分辨率测量方法。在现有 2D 分辨率方法的基础上,我们提出了一种 3D 分辨率方法。我们对 3D 显示器的空间和频率信号响应进行了研究。第一种方法由主要频率序列决定。第二种方法通过对比度调制进行。通过三维显示器的实验,使用所提出的方法测量了三维分辨率,并研究了三维光学参数与分辨率之间的关系。
期刊介绍:
The journal, established in 1995, publishes original research in Virtual Reality, Augmented and Mixed Reality that shapes and informs the community. The multidisciplinary nature of the field means that submissions are welcomed on a wide range of topics including, but not limited to:
Original research studies of Virtual Reality, Augmented Reality, Mixed Reality and real-time visualization applications
Development and evaluation of systems, tools, techniques and software that advance the field, including:
Display technologies, including Head Mounted Displays, simulators and immersive displays
Haptic technologies, including novel devices, interaction and rendering
Interaction management, including gesture control, eye gaze, biosensors and wearables
Tracking technologies
VR/AR/MR in medicine, including training, surgical simulation, rehabilitation, and tissue/organ modelling.
Impactful and original applications and studies of VR/AR/MR’s utility in areas such as manufacturing, business, telecommunications, arts, education, design, entertainment and defence
Research demonstrating new techniques and approaches to designing, building and evaluating virtual and augmented reality systems
Original research studies assessing the social, ethical, data or legal aspects of VR/AR/MR.