A. A. Zaitsev, Yu. S. Pogozhev, A. Yu. Potanin, A. N. Astapov, I. O. Vakhrusheva, V. V. Korolev, S. I. Rupasov, E. A. Levashov
{"title":"The Structure and Properties of the Promising Ultra-High-Temperature HfB2–HfC–SiC Ceramics Obtained from Heterophase SHS Powders","authors":"A. A. Zaitsev, Yu. S. Pogozhev, A. Yu. Potanin, A. N. Astapov, I. O. Vakhrusheva, V. V. Korolev, S. I. Rupasov, E. A. Levashov","doi":"10.3103/S1061386224700067","DOIUrl":null,"url":null,"abstract":"<p>This work continues the earlier studies focusing on fabrication of heterophase micropowders and consolidated ceramics based on HfB<sub>2</sub>–HfC–SiC ultra-high-temperature boride/carbide compositions via self-propagating high-temperature synthesis (SHS) and hot pressing (HP). The effect of NH<sub>4</sub>Cl addition on the morphology and microstructure of the SHS powders was studied. Composite micropowders characterized by particle size of 0.2–10 μm and 40–50% content of the submicron-sized fraction were fabricated. The structure, mechanical and thermophysical properties, kinetics and mechanism of high-temperature oxidation of hot-pressed ceramic materials composed of 57–72 wt % HfB<sub>2</sub>, 14–20 wt % HfC<sub><i>x</i></sub>, 10–14 wt % SiC, and 8–15 wt % HfO<sub>2</sub> were studied. They are found to have hardness up to 18.9 GPa, crack resistance up to 9.7 MPa m<sup>0.5</sup>, bending strength up to 400 MPa, temperature diffusivity up to 22.6 mm<sup>2</sup>/s, and thermal conductivity up to 59 W/(m K). The power law describes their oxidation kinetics. The protection mechanism against oxidation involves the formation of a multilayered heterogenous oxide film consisting of HfO<sub>2</sub>, HfSiO<sub>4</sub>, and borosilicate glass.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"33 2","pages":"122 - 137"},"PeriodicalIF":0.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Self-Propagating High-Temperature Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1061386224700067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This work continues the earlier studies focusing on fabrication of heterophase micropowders and consolidated ceramics based on HfB2–HfC–SiC ultra-high-temperature boride/carbide compositions via self-propagating high-temperature synthesis (SHS) and hot pressing (HP). The effect of NH4Cl addition on the morphology and microstructure of the SHS powders was studied. Composite micropowders characterized by particle size of 0.2–10 μm and 40–50% content of the submicron-sized fraction were fabricated. The structure, mechanical and thermophysical properties, kinetics and mechanism of high-temperature oxidation of hot-pressed ceramic materials composed of 57–72 wt % HfB2, 14–20 wt % HfCx, 10–14 wt % SiC, and 8–15 wt % HfO2 were studied. They are found to have hardness up to 18.9 GPa, crack resistance up to 9.7 MPa m0.5, bending strength up to 400 MPa, temperature diffusivity up to 22.6 mm2/s, and thermal conductivity up to 59 W/(m K). The power law describes their oxidation kinetics. The protection mechanism against oxidation involves the formation of a multilayered heterogenous oxide film consisting of HfO2, HfSiO4, and borosilicate glass.
期刊介绍:
International Journal of Self-Propagating High-Temperature Synthesis is an international journal covering a wide range of topics concerned with self-propagating high-temperature synthesis (SHS), the process for the production of advanced materials based on solid-state combustion utilizing internally generated chemical energy. Subjects range from the fundamentals of SHS processes, chemistry and technology of SHS products and advanced materials to problems concerned with related fields, such as the kinetics and thermodynamics of high-temperature chemical reactions, combustion theory, macroscopic kinetics of nonisothermic processes, etc. The journal is intended to provide a wide-ranging exchange of research results and a better understanding of developmental and innovative trends in SHS science and applications.