Two closed-loop nickel-based catalysts for use in alkaline water electrolysis under industrial conditions

IF 2.6 4区 化学 Q3 ELECTROCHEMISTRY Journal of Solid State Electrochemistry Pub Date : 2024-07-03 DOI:10.1007/s10008-024-05996-2
Li Zhu, Qing-Yun Fang, Si-Tong Liu, Bing Li, Fang Li, Zhen-Guo Guo, Ning Deng, Jian-Bo He
{"title":"Two closed-loop nickel-based catalysts for use in alkaline water electrolysis under industrial conditions","authors":"Li Zhu,&nbsp;Qing-Yun Fang,&nbsp;Si-Tong Liu,&nbsp;Bing Li,&nbsp;Fang Li,&nbsp;Zhen-Guo Guo,&nbsp;Ning Deng,&nbsp;Jian-Bo He","doi":"10.1007/s10008-024-05996-2","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents the preparation and performance evaluation of two closed-loop nickel-based catalysts. The (hydro)oxide coatings of nickel-molybdenum and nickel-iron were electrodeposited onto industrial nickel meshes, which were subsequently used as the cathode and anode (NiMo@NM and NiFe@NM) in alkaline water electrolysis. Both catalysts formed a fully closed-loop configuration, surrounding each nickel wire on the nickel mesh, thereby enhancing the bonding strength with the substrate. The NiMo@NM||NiFe@NM assembly achieved a current density of 200 mA cm<sup>−2</sup> at a cell voltage of only 1.91 V and room temperature, maintaining this level of performance for over 280 h. A single-stack flow cell was used to examine the changes in cell voltage in relation to temperature, current density, and electrolyte flow rate and concentration. The specific energy consumption for hydrogen production can be reduced to 4.1 kWh Nm<sup>−3</sup> (H<sub>2</sub>) under near-industrial conditions (70 °C, 6 M KOH, 400 mA cm<sup>−2</sup>). We hope that this study can help bridge the gap between catalyst studies and practical industrial applications.</p></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"28 10","pages":"3915 - 3927"},"PeriodicalIF":2.6000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Electrochemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10008-024-05996-2","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the preparation and performance evaluation of two closed-loop nickel-based catalysts. The (hydro)oxide coatings of nickel-molybdenum and nickel-iron were electrodeposited onto industrial nickel meshes, which were subsequently used as the cathode and anode (NiMo@NM and NiFe@NM) in alkaline water electrolysis. Both catalysts formed a fully closed-loop configuration, surrounding each nickel wire on the nickel mesh, thereby enhancing the bonding strength with the substrate. The NiMo@NM||NiFe@NM assembly achieved a current density of 200 mA cm−2 at a cell voltage of only 1.91 V and room temperature, maintaining this level of performance for over 280 h. A single-stack flow cell was used to examine the changes in cell voltage in relation to temperature, current density, and electrolyte flow rate and concentration. The specific energy consumption for hydrogen production can be reduced to 4.1 kWh Nm−3 (H2) under near-industrial conditions (70 °C, 6 M KOH, 400 mA cm−2). We hope that this study can help bridge the gap between catalyst studies and practical industrial applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于工业条件下碱性水电解的两种闭环镍基催化剂
本文介绍了两种闭环镍基催化剂的制备和性能评估。镍-钼和镍-铁的(氢)氧化物涂层被电沉积到工业镍网上,随后在碱性水电解中用作阴极和阳极(NiMo@NM 和 NiFe@NM)。两种催化剂都形成了完全闭环的结构,将镍网上的每根镍丝包围起来,从而增强了与基体的结合强度。NiMo@NM||NiFe@NM 组件在电池电压仅为 1.91 V 和室温条件下的电流密度达到了 200 mA cm-2,并在超过 280 小时的时间内保持了这一性能水平。在接近工业化的条件下(70 °C、6 M KOH、400 mA cm-2),制氢的比能耗可降至 4.1 kWh Nm-3 (H2)。我们希望这项研究能帮助缩小催化剂研究与实际工业应用之间的差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.80
自引率
4.00%
发文量
227
审稿时长
4.1 months
期刊介绍: The Journal of Solid State Electrochemistry is devoted to all aspects of solid-state chemistry and solid-state physics in electrochemistry. The Journal of Solid State Electrochemistry publishes papers on all aspects of electrochemistry of solid compounds, including experimental and theoretical, basic and applied work. It equally publishes papers on the thermodynamics and kinetics of electrochemical reactions if at least one actively participating phase is solid. Also of interest are articles on the transport of ions and electrons in solids whenever these processes are relevant to electrochemical reactions and on the use of solid-state electrochemical reactions in the analysis of solids and their surfaces. The journal covers solid-state electrochemistry and focusses on the following fields: mechanisms of solid-state electrochemical reactions, semiconductor electrochemistry, electrochemical batteries, accumulators and fuel cells, electrochemical mineral leaching, galvanic metal plating, electrochemical potential memory devices, solid-state electrochemical sensors, ion and electron transport in solid materials and polymers, electrocatalysis, photoelectrochemistry, corrosion of solid materials, solid-state electroanalysis, electrochemical machining of materials, electrochromism and electrochromic devices, new electrochemical solid-state synthesis. The Journal of Solid State Electrochemistry makes the professional in research and industry aware of this swift progress and its importance for future developments and success in the above-mentioned fields.
期刊最新文献
Voltammetric determination of hydroxymethylfurfural in honey using screen-printed carbon electrodes: optimization and in-house validation tests Comparative analysis of pH sensing performance of nitrogen-doped ZnO on screen-printed silver and carbon electrodes Effect of electrodeposition of AuPt nanostructure thin films on the electrocatalytic activity of counter electrodes: DSSCs application Study of superhydrophobicity and corrosion resistance of electrodeposited Zn-Ni-HDTMS coating Screen-printed carbon electrode modified with AgNPs obtained via green synthesis for acetaminophen determination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1