A Robust Randomized Indicator Method for Accurate Symmetric Eigenvalue Detection

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-06-28 DOI:10.1007/s10915-024-02599-x
Zhongyuan Chen, Jiguang Sun, Jianlin Xia
{"title":"A Robust Randomized Indicator Method for Accurate Symmetric Eigenvalue Detection","authors":"Zhongyuan Chen, Jiguang Sun, Jianlin Xia","doi":"10.1007/s10915-024-02599-x","DOIUrl":null,"url":null,"abstract":"<p>We propose a robust randomized indicator method for the reliable detection of eigenvalue existence within an interval for symmetric matrices <i>A</i>. An indicator tells the eigenvalue existence based on some statistical norm estimators for a spectral projector. Previous work on eigenvalue indicators relies on a threshold which is empirically chosen, thus often resulting in under or over detection. In this paper, we use rigorous statistical analysis to guide the design of a robust indicator. Multiple randomized estimators for a contour integral operator in terms of <i>A</i> are analyzed. In particular, when <i>A</i> has eigenvalues inside a given interval, we show that the failure probability (for the estimators to return very small estimates) is extremely low. This enables to design a robust rejection indicator based on the control of the failure probability. We also give a prototype framework to illustrate how the indicator method may be applied numerically for eigenvalue detection and may potentially serve as a new way to design randomized symmetric eigenvalue solvers. Unlike previous indicator methods that only detect eigenvalue existence, the framework also provides a way to find eigenvectors with little extra cost by reusing computations from indicator evaluations. Extensive numerical tests show the reliability of the eigenvalue detection in multiple aspects.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02599-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a robust randomized indicator method for the reliable detection of eigenvalue existence within an interval for symmetric matrices A. An indicator tells the eigenvalue existence based on some statistical norm estimators for a spectral projector. Previous work on eigenvalue indicators relies on a threshold which is empirically chosen, thus often resulting in under or over detection. In this paper, we use rigorous statistical analysis to guide the design of a robust indicator. Multiple randomized estimators for a contour integral operator in terms of A are analyzed. In particular, when A has eigenvalues inside a given interval, we show that the failure probability (for the estimators to return very small estimates) is extremely low. This enables to design a robust rejection indicator based on the control of the failure probability. We also give a prototype framework to illustrate how the indicator method may be applied numerically for eigenvalue detection and may potentially serve as a new way to design randomized symmetric eigenvalue solvers. Unlike previous indicator methods that only detect eigenvalue existence, the framework also provides a way to find eigenvectors with little extra cost by reusing computations from indicator evaluations. Extensive numerical tests show the reliability of the eigenvalue detection in multiple aspects.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于精确对称特征值检测的稳健随机指标法
我们提出了一种稳健的随机指标法,用于可靠地检测对称矩阵 A 在区间内的特征值存在性。以往关于特征值指标的研究依赖于根据经验选择的阈值,因此往往会导致检测不足或检测过度。在本文中,我们使用严格的统计分析来指导稳健指标的设计。本文分析了以 A 为单位的轮廓积分算子的多个随机估计器。特别是,当 A 的特征值在给定区间内时,我们证明失败概率(估计器返回极小估计值)极低。因此,我们可以设计一种基于失效概率控制的稳健剔除指标。我们还给出了一个原型框架,说明如何将指标法应用于特征值数值检测,并有可能成为设计随机对称特征值求解器的一种新方法。与以往只检测特征值是否存在的指标法不同,该框架还提供了一种方法,通过重复使用指标评估的计算结果,以很少的额外成本找到特征向量。大量的数值测试表明,特征值检测在多个方面都非常可靠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1