Unique Fluorescence of Aggregation-Induced Emission Luminogens on Solid Surfaces Modified by Silicone Nanofilaments

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Langmuir Pub Date : 2024-07-04 DOI:10.1021/acs.langmuir.4c01411
Fan Min, Jinzhi He, Wenting Zhou, Deqi Wang, Sheng Xie*, Zonglin Chu* and Zebing Zeng*, 
{"title":"Unique Fluorescence of Aggregation-Induced Emission Luminogens on Solid Surfaces Modified by Silicone Nanofilaments","authors":"Fan Min,&nbsp;Jinzhi He,&nbsp;Wenting Zhou,&nbsp;Deqi Wang,&nbsp;Sheng Xie*,&nbsp;Zonglin Chu* and Zebing Zeng*,&nbsp;","doi":"10.1021/acs.langmuir.4c01411","DOIUrl":null,"url":null,"abstract":"<p >Aggregation-induced emission (AIE) has revolutionized solid-state fluorescence by overcoming the limitations of aggregation-caused quenching. While extensively studied in solutions, AIE’s potential on solid surfaces remains largely unexplored, which can be fundamentally interesting and practically useful. In this work, we demonstrate the successful dispersion of tetraphenylethylene (TPE), one of the most classical AIE luminogens, on solid surfaces coated with silicone nanofilaments (SNF). The high surface area of SNF enables the uniform immobilization of TPE luminogens, replicating their dispersal behavior in solutions. Compared to unmodified surfaces, TPE dispersed on SNF-coated surfaces exhibits significantly enhanced fluorescence intensity. Moreover, a fascinating dynamic blue shift in TPE emission on SNF-coated surfaces is observed, with the velocity controllable by the surface group of SNF by up to 4 orders of magnitude, showing that TPE can be applied to the judgment of the nanoscale morphology and surface free energy of the solid surface. Owing to the superhydrophobicity and self-cleaning properties of SNF, the on-surface fluorescence can be sustained underwater and is resistant to dust contamination and rain erosion, with potential applications of information encryption presented. Our approach of uniformly dispersing AIE luminogens on nanomaterials with high surface areas provides a general methodology for creating on-surface fluorescence and saving the usage of expensive AIE luminogens in applications.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.langmuir.4c01411","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Aggregation-induced emission (AIE) has revolutionized solid-state fluorescence by overcoming the limitations of aggregation-caused quenching. While extensively studied in solutions, AIE’s potential on solid surfaces remains largely unexplored, which can be fundamentally interesting and practically useful. In this work, we demonstrate the successful dispersion of tetraphenylethylene (TPE), one of the most classical AIE luminogens, on solid surfaces coated with silicone nanofilaments (SNF). The high surface area of SNF enables the uniform immobilization of TPE luminogens, replicating their dispersal behavior in solutions. Compared to unmodified surfaces, TPE dispersed on SNF-coated surfaces exhibits significantly enhanced fluorescence intensity. Moreover, a fascinating dynamic blue shift in TPE emission on SNF-coated surfaces is observed, with the velocity controllable by the surface group of SNF by up to 4 orders of magnitude, showing that TPE can be applied to the judgment of the nanoscale morphology and surface free energy of the solid surface. Owing to the superhydrophobicity and self-cleaning properties of SNF, the on-surface fluorescence can be sustained underwater and is resistant to dust contamination and rain erosion, with potential applications of information encryption presented. Our approach of uniformly dispersing AIE luminogens on nanomaterials with high surface areas provides a general methodology for creating on-surface fluorescence and saving the usage of expensive AIE luminogens in applications.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
硅胶纳米丝修饰的固体表面上聚集诱导发光体的独特荧光。
聚集诱导发射(AIE)克服了聚集淬灭的局限性,为固态荧光带来了革命性的变化。虽然 AIE 在溶液中得到了广泛的研究,但其在固体表面上的潜力在很大程度上仍未得到开发,而这可能具有根本的意义和实际用途。在这项研究中,我们展示了四苯乙烯(TPE)在涂有硅纳米丝(SNF)的固体表面上的成功分散,四苯乙烯是最经典的 AIE 发光剂之一。硅纳米丝的高表面积使 TPE 发光体得以均匀固定,复制了它们在溶液中的分散行为。与未经改性的表面相比,分散在 SNF 涂层表面上的 TPE 的荧光强度明显增强。此外,还观察到 TPE 在 SNF 涂层表面上的发射发生了迷人的动态蓝移,其速度可由 SNF 的表面基团控制,最高可达 4 个数量级,这表明 TPE 可用于判断固体表面的纳米级形态和表面自由能。由于 SNF 的超疏水性和自清洁特性,其表面荧光可在水下持续,并能抵抗灰尘污染和雨水侵蚀,具有信息加密的潜在应用前景。我们在具有高表面积的纳米材料上均匀分散 AIE 发光剂的方法为产生表面荧光提供了一种通用方法,并节省了昂贵的 AIE 发光剂在应用中的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
期刊最新文献
Mechanism of Sulfate Radical Formation on Activation of Persulfate Using Doped Metal Oxide and Its Role in Degradation of Tartrazine Dye in an Aqueous Solution. Selective SERS Sensing of R6G Molecules Using MoS2 Nanoflowers under Pressure. Synthesis and Fabrication of Metal Cation Intercalation in Multilayered Ti3C2Tx Composite CNF Electrode for Asymmetric Coin Cell Supercapacitors. Unveiling the Electrostatically Driven Collapsing and Relaxation of Polyelectrolyte-Colloid Complexes: A Tunable Pathway to Colloidal Assembly. Preparation and Properties Improvement of Decynediol-Ethoxylate-Modified Trisiloxane Surfactant
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1