Pub Date : 2024-11-19DOI: 10.1021/acs.langmuir.4c03157
Linlin Huang, Xuwen Zhang, Tingting Liu, Lin Wang, Lixin Li, Da Li, Tao Sheng, Zilong Dong, Xinyue Zhao
A coal tar pitch-based porous carbon adsorbent (CPA) was synthesized through a straightforward method involving the heating of a mixture of KOH and coal tar pitch (CTP). This CPA exhibited a high surface area of 1811.2 m2 g-1 and a large pore volume of 0.94 cm3 g-1 when prepared with a CTP to KOH mass ratio of 1:4 at 800 °C. Parameters such as the heating temperature and activator dose were optimized to enhance the adsorption efficiency. The prepared CPA was extensively characterized by SEM, XRD, FTIR, and BET measurements. Notably, CPA presented a distinct adsorption performance for Orange G (OG), achieving a maximum adsorption capability of 449.7 mg g-1. Kinetic studies indicated that the adsorption process followed the pseudo-second-order model, while the adsorption isotherm data demonstrated that both chemical and physical interactions favored OG adsorption. Thermodynamic analysis revealed that the adsorption of OG on CPA was spontaneous and exothermic and increased the entropy. Density functional theory (DFT) calculations provided insights into the adsorption mechanism, highlighting electrostatic interactions, hydrogen bonds, and π-π interactions as the dominant processes governing OG adsorption onto the adsorbent.
{"title":"Adsorption of Orange G on Activated Porous Carbon Derived from Coal Tar Pitch: Experimental and DFT Study.","authors":"Linlin Huang, Xuwen Zhang, Tingting Liu, Lin Wang, Lixin Li, Da Li, Tao Sheng, Zilong Dong, Xinyue Zhao","doi":"10.1021/acs.langmuir.4c03157","DOIUrl":"https://doi.org/10.1021/acs.langmuir.4c03157","url":null,"abstract":"<p><p>A coal tar pitch-based porous carbon adsorbent (CPA) was synthesized through a straightforward method involving the heating of a mixture of KOH and coal tar pitch (CTP). This CPA exhibited a high surface area of 1811.2 m<sup>2</sup> g<sup>-1</sup> and a large pore volume of 0.94 cm<sup>3</sup> g<sup>-1</sup> when prepared with a CTP to KOH mass ratio of 1:4 at 800 °C. Parameters such as the heating temperature and activator dose were optimized to enhance the adsorption efficiency. The prepared CPA was extensively characterized by SEM, XRD, FTIR, and BET measurements. Notably, CPA presented a distinct adsorption performance for Orange G (OG), achieving a maximum adsorption capability of 449.7 mg g<sup>-1</sup>. Kinetic studies indicated that the adsorption process followed the pseudo-second-order model, while the adsorption isotherm data demonstrated that both chemical and physical interactions favored OG adsorption. Thermodynamic analysis revealed that the adsorption of OG on CPA was spontaneous and exothermic and increased the entropy. Density functional theory (DFT) calculations provided insights into the adsorption mechanism, highlighting electrostatic interactions, hydrogen bonds, and π-π interactions as the dominant processes governing OG adsorption onto the adsorbent.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-19DOI: 10.1021/acs.langmuir.4c03975
Ziqian Zhao, Charley Huang, Hongbo Zeng
Biofouling can cause severe infections, device malfunctions, and failures in diagnostics and therapeutics. Proteins such as bovine serum albumin (BSA) have recently been used as coatings to resist biofouling because they combine surface anchoring and antifouling properties. However, their antifouling effectiveness will significantly deteriorate in complex biofluids with high salinity, limiting their practical applications. In this work, we developed a zwitterion-conjugated protein with enhanced antifouling capability by grafting zwitterionic 2-methacryloyloxyethyl phosphorylcholine (MPC) onto BSA protein via a click reaction. This conjugated protein can easily anchor on various substrates, both inorganic and organic, and exhibits efficient and broad-spectrum fouling resistance to metabolites, proteins, and complex biofluids. Even in the complex fetal bovine serum with higher salinity, the BSA@MPC coating can also maintain 99% fouling resistance robustly, over 6-fold superior to native BSA-coated surfaces in antifouling capability. Direct surface forces measurement reveals that such outstanding antifouling properties of conjugated protein BSA@MPC could be attributed to the stable hydration layer on its surface and the steric repulsion from the antipolyelectrolyte behavior of zwitterionic MPC polymer in the high-salinity environment. Our findings advance the development of protein-based functional materials and provide valuable insights for designing novel antifouling surfaces for marine, food, and bioengineering applications.
{"title":"Zwitterion-Conjugated Protein Coatings for Enhanced Antifouling in Complex Biofluids: Underlying Molecular Interaction Mechanisms.","authors":"Ziqian Zhao, Charley Huang, Hongbo Zeng","doi":"10.1021/acs.langmuir.4c03975","DOIUrl":"https://doi.org/10.1021/acs.langmuir.4c03975","url":null,"abstract":"<p><p>Biofouling can cause severe infections, device malfunctions, and failures in diagnostics and therapeutics. Proteins such as bovine serum albumin (BSA) have recently been used as coatings to resist biofouling because they combine surface anchoring and antifouling properties. However, their antifouling effectiveness will significantly deteriorate in complex biofluids with high salinity, limiting their practical applications. In this work, we developed a zwitterion-conjugated protein with enhanced antifouling capability by grafting zwitterionic 2-methacryloyloxyethyl phosphorylcholine (MPC) onto BSA protein via a click reaction. This conjugated protein can easily anchor on various substrates, both inorganic and organic, and exhibits efficient and broad-spectrum fouling resistance to metabolites, proteins, and complex biofluids. Even in the complex fetal bovine serum with higher salinity, the BSA@MPC coating can also maintain 99% fouling resistance robustly, over 6-fold superior to native BSA-coated surfaces in antifouling capability. Direct surface forces measurement reveals that such outstanding antifouling properties of conjugated protein BSA@MPC could be attributed to the stable hydration layer on its surface and the steric repulsion from the antipolyelectrolyte behavior of zwitterionic MPC polymer in the high-salinity environment. Our findings advance the development of protein-based functional materials and provide valuable insights for designing novel antifouling surfaces for marine, food, and bioengineering applications.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Constructing alternating donor-acceptor (D-A) units within g-C3N4 represents an effective strategy for enhancing photocatalytic performance through improved charge carrier separation while concurrently addressing energy shortages and facilitating wastewater remediation. Here, a series of D-A-type conjugated photocatalysts (CNBTC-X) are prepared using g-C3N4 as an acceptor unit and different masses of 5-bromo-2-thiophenecarboxaldehyde (BTC) as a donor unit by a one-step thermal polymerization. CNBTC-50 presents higher photocatalytic properties for CO2 reduction coupled with tetracycline (TC) removal than those of g-C3N4, CNBTC-10, CNBTC-30, and CNBTC-70. The introduction of the unique electron-donor-acceptor structure effectively drives the separation and transfer of photoinduced carriers while reducing the internal carrier transfer hindrance. Photocatalytic experiments reveal that the CNBTC-50 photocatalyst achieves up to 94.6% TC removal under visible light irradiation conditions. Compared with that of the pristine g-C3N4, the photocatalytic degradation reaction rate constant of CNBTC-50 is significantly increased by about 3.87 times. The study examines the influence of various reaction parameters on degradation activity, including catalyst concentration, pH, and TC concentration. Additionally, LC-MS is utilized to perform a comprehensive analysis of the intermediates and pathways involved in TC degradation. Furthermore, CNBTC-50 demonstrates remarkable photocatalytic CO2 reduction activity, achieving rates of 20.83 μmol g-1 h-1 (CO) and 9.36 μmol g-1 h-1 (CH4), which are 10.68 and 5.98 times more efficient than those of g-C3N4, respectively. This work aims to offer valuable guidance for the rational design of nonmetal D-A-structured catalysts and effectively integrates reaction systems to couple CO2 reduction with antibiotic removal.
{"title":"Enhancing Internal Electric Field of Metal-Free Donor-Acceptor Conjugated Photocatalysts for Efficient Photocatalytic Degradation of Tetracycline and CO<sub>2</sub> Reduction.","authors":"Guangyu Wu, Geng Li, Yonggong Tang, Guoyu Tai, Yuwei Pan, Jiangang Han, Weinan Xing","doi":"10.1021/acs.langmuir.4c03632","DOIUrl":"https://doi.org/10.1021/acs.langmuir.4c03632","url":null,"abstract":"<p><p>Constructing alternating donor-acceptor (D-A) units within g-C<sub>3</sub>N<sub>4</sub> represents an effective strategy for enhancing photocatalytic performance through improved charge carrier separation while concurrently addressing energy shortages and facilitating wastewater remediation. Here, a series of D-A-type conjugated photocatalysts (CNBTC-X) are prepared using g-C<sub>3</sub>N<sub>4</sub> as an acceptor unit and different masses of 5-bromo-2-thiophenecarboxaldehyde (BTC) as a donor unit by a one-step thermal polymerization. CNBTC-50 presents higher photocatalytic properties for CO<sub>2</sub> reduction coupled with tetracycline (TC) removal than those of g-C<sub>3</sub>N<sub>4</sub>, CNBTC-10, CNBTC-30, and CNBTC-70. The introduction of the unique electron-donor-acceptor structure effectively drives the separation and transfer of photoinduced carriers while reducing the internal carrier transfer hindrance. Photocatalytic experiments reveal that the CNBTC-50 photocatalyst achieves up to 94.6% TC removal under visible light irradiation conditions. Compared with that of the pristine g-C<sub>3</sub>N<sub>4</sub>, the photocatalytic degradation reaction rate constant of CNBTC-50 is significantly increased by about 3.87 times. The study examines the influence of various reaction parameters on degradation activity, including catalyst concentration, pH, and TC concentration. Additionally, LC-MS is utilized to perform a comprehensive analysis of the intermediates and pathways involved in TC degradation. Furthermore, CNBTC-50 demonstrates remarkable photocatalytic CO<sub>2</sub> reduction activity, achieving rates of 20.83 μmol g<sup>-1</sup> h<sup>-1</sup> (CO) and 9.36 μmol g<sup>-1</sup> h<sup>-1</sup> (CH<sub>4</sub>), which are 10.68 and 5.98 times more efficient than those of g-C<sub>3</sub>N<sub>4</sub>, respectively. This work aims to offer valuable guidance for the rational design of nonmetal D-A-structured catalysts and effectively integrates reaction systems to couple CO<sub>2</sub> reduction with antibiotic removal.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the flotation process, there is galvanic corrosion between sulfide mineral particles, which increases the difficulty of separation between minerals. Therefore, the selection of suitable reagents to weaken this corrosion is of great significance. In this article, macromolecular organic reagent sodium lignosulfonate (SLC) was used to weaken the galvanic corrosion between galena and pyrite. Meanwhile, the effect of SLC on the mineral flotation behavior was studied, and the mechanism of SLC was further studied through ion dissolution tests, contact angle tests, infrared spectrum tests, and density functional theory (DFT) calculation. The adsorption of SLC on the mineral electrode increased the charge transfer resistance on the surface of the mineral electrode and hindered the resistance transfer; therefore, it could weaken the galvanic corrosion between galena and pyrite. SLC could selectively depress pyrite at low alkalinity. CaOH+ promoted the adsorption of SLC on the pyrite surface. When the pH of the slurry was adjusted by lime, SLC was more easily adsorbed on the pyrite surface, which hindered the adsorption of the collector on the surface of pyrite.
{"title":"Galvanic Interaction between Galena and Pyrite in the Presence of Sodium Lignosulfonate and Its Effects on Flotation.","authors":"Zhicheng Liu, Yanfang Cui, Fen Jiao, Wenqing Qin, Qian Wei","doi":"10.1021/acs.langmuir.4c03312","DOIUrl":"https://doi.org/10.1021/acs.langmuir.4c03312","url":null,"abstract":"<p><p>In the flotation process, there is galvanic corrosion between sulfide mineral particles, which increases the difficulty of separation between minerals. Therefore, the selection of suitable reagents to weaken this corrosion is of great significance. In this article, macromolecular organic reagent sodium lignosulfonate (SLC) was used to weaken the galvanic corrosion between galena and pyrite. Meanwhile, the effect of SLC on the mineral flotation behavior was studied, and the mechanism of SLC was further studied through ion dissolution tests, contact angle tests, infrared spectrum tests, and density functional theory (DFT) calculation. The adsorption of SLC on the mineral electrode increased the charge transfer resistance on the surface of the mineral electrode and hindered the resistance transfer; therefore, it could weaken the galvanic corrosion between galena and pyrite. SLC could selectively depress pyrite at low alkalinity. CaOH<sup>+</sup> promoted the adsorption of SLC on the pyrite surface. When the pH of the slurry was adjusted by lime, SLC was more easily adsorbed on the pyrite surface, which hindered the adsorption of the collector on the surface of pyrite.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Palm leaves serve as a traditional recording medium and are widespread in south and southeast Asia, and they have a long history. However, they are sensitive to environmental fluctuations, especially moisture, which may severely affect their conservation status. In this research, the moisture absorption behaviors of palm leaves in different states, including raw, treated, naturally aged, and artificially aged ones, were investigated by intelligent gravimetric analysis (IGA) and water retention value (WRV) to analyze their moisture absorption characteristics. Mathematical model was employed to fit and analyze their water adsorption curves, aiming to explore the content and distribution of the adsorbed water in monolayered and multilayered. Then, the chemical and physical properties of different palm leaves were studied by chemical composition analysis, Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), nitrogen adsorption, scanning electron microscopy (SEM), and low-field nuclear magnetic resonance (low-field NMR), and the relationship between moisture absorption characteristics and their chemical composition and physical structures was analyzed. The results demonstrated that both treatment and aging processes could have a noticeable impact on the moisture absorption of palm leaves, as evidenced by reduced equilibrium moisture content (EMC) at high relative humidity (RH), decreased multilayer water adsorption content, and slightly increased monolayer water adsorption content. Besides, palm leaves exhibit a lower rate of moisture adsorption, at ∼30-50% RH, which facilitates their long-term conservation. The results of chemical and physical analyses revealed that the reduced content of hydrophilic groups was the primary reason for a decrease in palm leaves moisture absorption. Additionally, the fiber structure changes of palm leaves caused by treatment or aging may have different influences on their moisture adsorption, especially the content of monolayer adsorbed water.
{"title":"Investigation on the Moisture Absorption Behaviors of Palm Leaves (<i>Corypha umbraculifera</i>) and Their Variation Mechanism.","authors":"Zirui Zhu, Yuqing Jia, Hanwei Yu, Shuang Yu, Yangxin Zhou, Peng Liu, Hongbin Zhang, Yuliang Yang","doi":"10.1021/acs.langmuir.4c03368","DOIUrl":"https://doi.org/10.1021/acs.langmuir.4c03368","url":null,"abstract":"<p><p>Palm leaves serve as a traditional recording medium and are widespread in south and southeast Asia, and they have a long history. However, they are sensitive to environmental fluctuations, especially moisture, which may severely affect their conservation status. In this research, the moisture absorption behaviors of palm leaves in different states, including raw, treated, naturally aged, and artificially aged ones, were investigated by intelligent gravimetric analysis (IGA) and water retention value (WRV) to analyze their moisture absorption characteristics. Mathematical model was employed to fit and analyze their water adsorption curves, aiming to explore the content and distribution of the adsorbed water in monolayered and multilayered. Then, the chemical and physical properties of different palm leaves were studied by chemical composition analysis, Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), nitrogen adsorption, scanning electron microscopy (SEM), and low-field nuclear magnetic resonance (low-field NMR), and the relationship between moisture absorption characteristics and their chemical composition and physical structures was analyzed. The results demonstrated that both treatment and aging processes could have a noticeable impact on the moisture absorption of palm leaves, as evidenced by reduced equilibrium moisture content (EMC) at high relative humidity (RH), decreased multilayer water adsorption content, and slightly increased monolayer water adsorption content. Besides, palm leaves exhibit a lower rate of moisture adsorption, at ∼30-50% RH, which facilitates their long-term conservation. The results of chemical and physical analyses revealed that the reduced content of hydrophilic groups was the primary reason for a decrease in palm leaves moisture absorption. Additionally, the fiber structure changes of palm leaves caused by treatment or aging may have different influences on their moisture adsorption, especially the content of monolayer adsorbed water.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-18DOI: 10.1021/acs.langmuir.4c02884
Xiaolong Lu, Shuting Zhang, Xinhai Chen, Ying Wei, Long Cao, Bincheng Zhao, Jun Yin
Enrichment of metal particles in lubricating oil is a crucial pretreatment for wear debris analyses in applications of condition-based machinery maintenance. Current techniques using physical filter cleaning and magnetic attachment to enrich metal particles have limitations in terms of efficiency and selectivity. This work presents an innovative acoustic manipulation chip for efficiently enriching metallic particles from lubricating oil. The platform utilizes the hybrid acoustic forces to perform high throughput particle enrichment in microchannels, even in an intensive flow environment. Regarding the viscosity effect of lubricating oil, the temperature dependence upon the particle enrichment is explored, and the figure of merit is employed to quantify the enrichment performance from the captured microscopic images. Experimental results demonstrate the proposed platform shows great nonselectivity for enriching both magnetic and nonmagnetic particles. This method opens a new door for developing automatic filter-free pretreatment tools to perform efficient particle enrichment in lubricating oil, which have great potential in many application scenarios, such as advanced wear debris analyses, oil quality monitoring, etc.
{"title":"High-Efficiency Enrichment of Metallic Particles in Lubricating Oil Based on Filter-Free Acoustic Manipulation Chip.","authors":"Xiaolong Lu, Shuting Zhang, Xinhai Chen, Ying Wei, Long Cao, Bincheng Zhao, Jun Yin","doi":"10.1021/acs.langmuir.4c02884","DOIUrl":"https://doi.org/10.1021/acs.langmuir.4c02884","url":null,"abstract":"<p><p>Enrichment of metal particles in lubricating oil is a crucial pretreatment for wear debris analyses in applications of condition-based machinery maintenance. Current techniques using physical filter cleaning and magnetic attachment to enrich metal particles have limitations in terms of efficiency and selectivity. This work presents an innovative acoustic manipulation chip for efficiently enriching metallic particles from lubricating oil. The platform utilizes the hybrid acoustic forces to perform high throughput particle enrichment in microchannels, even in an intensive flow environment. Regarding the viscosity effect of lubricating oil, the temperature dependence upon the particle enrichment is explored, and the figure of merit is employed to quantify the enrichment performance from the captured microscopic images. Experimental results demonstrate the proposed platform shows great nonselectivity for enriching both magnetic and nonmagnetic particles. This method opens a new door for developing automatic filter-free pretreatment tools to perform efficient particle enrichment in lubricating oil, which have great potential in many application scenarios, such as advanced wear debris analyses, oil quality monitoring, etc.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Low alloy steel faces localized corrosion issues in service environments, primarily due to pitting corrosion induced by inclusions. Conventional protective measures cannot significantly improve the corrosion resistance of the steel. In this study, an effective industrial approach was proposed to enhance the corrosion resistance of low alloy steels. Cerium (Ce) was added during the refining process to modify inclusions and alter the mechanism of inclusion-induced localized corrosion, thereby improving the substrate's ability to inhibit pitting corrosion. The effect of Ce treatment on the cleanliness of molten steel was investigated, and a kinetic model of inclusion evolution was established based on thermodynamic calculations. The pitting corrosion induced by CaS·C12A7 and CeAlO3 inclusions was studied through immersion experiments over different durations. The degree of corrosion after being soaked for 20 min was significantly different. The size and depth of pitting pits induced by CeAlO3 inclusions were much smaller than those induced by CaS·C12A7 inclusions. The electron back scatter diffraction tests confirmed that CaS·C12A7 inclusions exhibited a higher corrosion sensitivity compared to CeAlO3, thus promoting the initiation of pitting. Electrochemical tests demonstrated a positive shift in the corrosion potential and a reduction in current density. This implies that CeAlO3 inclusions can significantly inhibit pitting occurrences. Based on the dissolution behaviors of CaS·C12A7 and CeAlO3 inclusions, a kinetic model was established to describe the initiation and propagation of pitting induced by these inclusions.
{"title":"Revealing the Effect of Ce on Pitting Corrosion Induced by Inclusions in Low Alloy Steel: Induction by CaS·C<sub>12</sub>A<sub>7</sub> and Inhibition by CeAlO<sub>3</sub>.","authors":"Leru Zhang, Yanchong Yu, Wangwang Mao, Jinling Zhang, Cong Chang, Shaohua Zhang, Wei Yan","doi":"10.1021/acs.langmuir.4c03491","DOIUrl":"10.1021/acs.langmuir.4c03491","url":null,"abstract":"<p><p>Low alloy steel faces localized corrosion issues in service environments, primarily due to pitting corrosion induced by inclusions. Conventional protective measures cannot significantly improve the corrosion resistance of the steel. In this study, an effective industrial approach was proposed to enhance the corrosion resistance of low alloy steels. Cerium (Ce) was added during the refining process to modify inclusions and alter the mechanism of inclusion-induced localized corrosion, thereby improving the substrate's ability to inhibit pitting corrosion. The effect of Ce treatment on the cleanliness of molten steel was investigated, and a kinetic model of inclusion evolution was established based on thermodynamic calculations. The pitting corrosion induced by CaS·C<sub>12</sub>A<sub>7</sub> and CeAlO<sub>3</sub> inclusions was studied through immersion experiments over different durations. The degree of corrosion after being soaked for 20 min was significantly different. The size and depth of pitting pits induced by CeAlO<sub>3</sub> inclusions were much smaller than those induced by CaS·C<sub>12</sub>A<sub>7</sub> inclusions. The electron back scatter diffraction tests confirmed that CaS·C<sub>12</sub>A<sub>7</sub> inclusions exhibited a higher corrosion sensitivity compared to CeAlO<sub>3</sub>, thus promoting the initiation of pitting. Electrochemical tests demonstrated a positive shift in the corrosion potential and a reduction in current density. This implies that CeAlO<sub>3</sub> inclusions can significantly inhibit pitting occurrences. Based on the dissolution behaviors of CaS·C<sub>12</sub>A<sub>7</sub> and CeAlO<sub>3</sub> inclusions, a kinetic model was established to describe the initiation and propagation of pitting induced by these inclusions.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-18DOI: 10.1021/acs.langmuir.4c03554
Yunbo Zheng, Umit Celik, Charlotte Vorwald, J Kent Leach, Gang-Yu Liu
Alginate hydrogels are frequently used in 3D bioprinting and tissue repair and regeneration. Establishing the structure-property-performance correlation of these materials would benefit significantly from high-resolution structural characterization in aqueous environments from the molecular level to continuum. This study overcomes technical challenges and enables high-resolution atomic force microscopy (AFM) imaging of hydrated alginate hydrogels in aqueous media. By combining a new sample preparation protocol with extremely gentle tapping mode AFM imaging, we characterized the morphology and regional mechanical properties of the hydrated alginate. Upon cross-linking, basic units of these hydrogel materials consist of egg-box dimers, which assemble into long fibrils. These fibrils congregate and pile up, forming a sponge-like structure, whose pore size and distribution depend on the cross-linking conditions. At the exterior, surface tension impacts the piling of fibrils, leading to stripe-like features. These structural features contribute to local, regional, and macroscopic mechanics. The outcome provides new insights into its structural characteristics from nanometers to tens of micrometers, i.e., at the dimensions pertaining to biomaterial and hydrogel-cell interactions. Collectively, the results advance our knowledge of the structure and mechanics from the nanometer to continuum, facilitating advanced applications in hydrogel biomaterials.
{"title":"High-Resolution Atomic Force Microscopy Investigation of Alginate Hydrogel Materials in Aqueous Media.","authors":"Yunbo Zheng, Umit Celik, Charlotte Vorwald, J Kent Leach, Gang-Yu Liu","doi":"10.1021/acs.langmuir.4c03554","DOIUrl":"https://doi.org/10.1021/acs.langmuir.4c03554","url":null,"abstract":"<p><p>Alginate hydrogels are frequently used in 3D bioprinting and tissue repair and regeneration. Establishing the structure-property-performance correlation of these materials would benefit significantly from high-resolution structural characterization in aqueous environments from the molecular level to continuum. This study overcomes technical challenges and enables high-resolution atomic force microscopy (AFM) imaging of hydrated alginate hydrogels in aqueous media. By combining a new sample preparation protocol with extremely gentle tapping mode AFM imaging, we characterized the morphology and regional mechanical properties of the hydrated alginate. Upon cross-linking, basic units of these hydrogel materials consist of egg-box dimers, which assemble into long fibrils. These fibrils congregate and pile up, forming a sponge-like structure, whose pore size and distribution depend on the cross-linking conditions. At the exterior, surface tension impacts the piling of fibrils, leading to stripe-like features. These structural features contribute to local, regional, and macroscopic mechanics. The outcome provides new insights into its structural characteristics from nanometers to tens of micrometers, i.e., at the dimensions pertaining to biomaterial and hydrogel-cell interactions. Collectively, the results advance our knowledge of the structure and mechanics from the nanometer to continuum, facilitating advanced applications in hydrogel biomaterials.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ferroptosis has been recognized as an iron-based nonapoptotic-regulated cell death process. In the quest of resisting the unyielding vehemence of triple-negative breast cancer (TNBC), herein we have showcased the ferroptosis-inducing heteroleptic [LIrcRu], [LIrcIrh], and [LIrcRe] complexes, enabling them to selectively target "sialic acid", an overexpressed cancer cell-surface marker. The open-circuit potential (OCP) measurements in live cancer cells revealed the specific interaction between TNBC and the complexes, whereas control experiments with normal cells did not exhibit such interactions. GSH depletion, GPx4 inhibition, NADH/NADPH oxidation, lipid peroxidation, COX-2 activation, and Nrf2 inactivation were meticulously investigated upon treatment with these complexes to establish a strong basis for ferroptosis. Among all complexes, the complex [LIrcIrh] (IC50 = 25 ± 2.17 μM) has been well-documented as a potent ferroptosis inducer, which unveils the sturdy interaction with sialic acid possessing the highest binding constant (Kb = 0.71 × 105 M-1, ΔG = -279345.8026 kcal/mol) along with the highest serum albumin binding affinity (KHSA = 0.67 × 106 M-1) and significant DNA intercalation (Kb = 0.56 × 105 M-1, Kapp = 1.06 × 106 M-1, and C50 of intercalation is 76.56 μM), displaying the decreased current intensity in differential pulse voltammetry (DPV). Moreover, the complex [LIrcIrh] exhibited mitochondrial dysfunction and membrane damage (diminished MMP, ΔΨm) through the production of copious reactive oxygen species (ROS) in MDA-MB-231 cells upon considerable accumulation in mitochondria (Pearson's coefficient = 0.842). The analysis of the field emission scanning electron microscopy (FE-SEM) image has marked the vivid membrane damage induced by the complex [LIrcIrh], exhibiting ablaze evidence for the destruction of TNBC cells through ferroptosis.
{"title":"Sialic Acid-Targeted Ru(II)/Ir(III)/Re(I) Complexes for Ferroptosis Induction in Triple-Negative Breast Cancer.","authors":"Nilmadhab Roy, Tiasha Dasgupta, Sreejani Ghosh, Meena Jayaprakash, Maynak Pal, Shanooja Shanavas, Surja Kanta Pal, Venkatesan Muthukumar, Annamalai Senthil Kumar, Ramasamy Tamizhselvi, Mithun Roy, Bipasha Bose, Debashis Panda, Rinku Chakrabarty, Priyankar Paira","doi":"10.1021/acs.langmuir.4c02043","DOIUrl":"https://doi.org/10.1021/acs.langmuir.4c02043","url":null,"abstract":"<p><p>Ferroptosis has been recognized as an iron-based nonapoptotic-regulated cell death process. In the quest of resisting the unyielding vehemence of triple-negative breast cancer (TNBC), herein we have showcased the ferroptosis-inducing heteroleptic [<b>LIr</b><sub><b>c</b></sub><b>Ru</b>], [<b>LIr</b><sub><b>c</b></sub><b>Ir</b><sub><b>h</b></sub>], and [<b>LIr</b><sub><b>c</b></sub><b>Re</b>] complexes, enabling them to selectively target \"sialic acid\", an overexpressed cancer cell-surface marker. The open-circuit potential (OCP) measurements in live cancer cells revealed the specific interaction between TNBC and the complexes, whereas control experiments with normal cells did not exhibit such interactions. GSH depletion, GPx4 inhibition, NADH/NADPH oxidation, lipid peroxidation, COX-2 activation, and Nrf2 inactivation were meticulously investigated upon treatment with these complexes to establish a strong basis for ferroptosis. Among all complexes, the complex [<b>LIr</b><sub><b>c</b></sub><b>Ir</b><sub><b>h</b></sub>] (IC<sub>50</sub> = 25 ± 2.17 μM) has been well-documented as a potent ferroptosis inducer, which unveils the sturdy interaction with sialic acid possessing the highest binding constant (<i>K</i><sub>b</sub> = 0.71 × 10<sup>5</sup> M<sup>-1</sup>, Δ<i>G</i> = -279345.8026 kcal/mol) along with the highest serum albumin binding affinity (<i>K</i><sub>HSA</sub> = 0.67 × 10<sup>6</sup> M<sup>-1</sup>) and significant DNA intercalation (<i>K</i><sub>b</sub> = 0.56 × 10<sup>5</sup> M<sup>-1</sup>, <i>K</i><sub>app</sub> = 1.06 × 10<sup>6</sup> M<sup>-1</sup>, and <i>C</i><sub>50</sub> of intercalation is 76.56 μM), displaying the decreased current intensity in differential pulse voltammetry (DPV). Moreover, the complex [<b>LIr</b><sub><b>c</b></sub><b>Ir</b><sub><b>h</b></sub>] exhibited mitochondrial dysfunction and membrane damage (diminished MMP, ΔΨ<sub>m</sub>) through the production of copious reactive oxygen species (ROS) in MDA-MB-231 cells upon considerable accumulation in mitochondria (Pearson's coefficient = 0.842). The analysis of the field emission scanning electron microscopy (FE-SEM) image has marked the vivid membrane damage induced by the complex [<b>LIr</b><sub><b>c</b></sub><b>Ir</b><sub><b>h</b></sub>], exhibiting ablaze evidence for the destruction of TNBC cells through ferroptosis.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-18DOI: 10.1021/acs.langmuir.4c03055
A K M Kafi, Pravin Pokhrel, Hao Shen, Hanbin Mao
Although chirality is critical for molecular properties and functions, experimental quantification of chirality is lacking. Herein, we performed cyclic voltammetry (CV) under polarized magnetic fields to provide a unified scale to quantify and compare DNA chirality. We observed the largest electron spin polarization in DNA structures with opposite chiral senses, which is consistent with the effect of chiral-induced spin selectivity (CISS). Spin polarization is weaker among DNA topologies of the same chiral arrangement, with DNA triplexes exhibiting the strongest CISS. Within DNA duplexes, spin polarization is further reduced depending on the sequence, with fewer guanine-cytosine (GC) pairs displaying a weaker CISS likely due to localized variations in chirality. Surprisingly, spin polarization is vectorial along the DNA duplex while presenting the smallest variation when the transportation directions of electrons become opposite. The four factors, chiral sense, topology, sequence, and directionality of electron transportation, delineate hierarchical contributions to molecular chirality, with profound implications ranging from spintronics to molecular recognitions.
虽然手性对分子特性和功能至关重要,但目前还缺乏对手性的实验量化。在此,我们在极化磁场下进行了循环伏安法(CV),为量化和比较 DNA 手性提供了一个统一的尺度。我们在手性感觉相反的 DNA 结构中观察到了最大的电子自旋极化,这与手性诱导的自旋选择性(CISS)效应一致。在具有相同手性排列的 DNA 拓扑中,自旋极化较弱,而 DNA 三重体则表现出最强的 CISS。在 DNA 双链体中,自旋极化因序列不同而进一步减弱,较少的鸟嘌呤-胞嘧啶(GC)对显示出较弱的 CISS,这可能是由于手性的局部变化所致。令人惊讶的是,自旋极化沿 DNA 双链呈矢量分布,而当电子的传输方向相反时,自旋极化的变化最小。手性感、拓扑结构、序列和电子传输方向性这四个因素划分了分子手性的层次,对自旋电子学和分子识别都有深远影响。
{"title":"Electroanalytical Quantification of DNA Chirality.","authors":"A K M Kafi, Pravin Pokhrel, Hao Shen, Hanbin Mao","doi":"10.1021/acs.langmuir.4c03055","DOIUrl":"https://doi.org/10.1021/acs.langmuir.4c03055","url":null,"abstract":"<p><p>Although chirality is critical for molecular properties and functions, experimental quantification of chirality is lacking. Herein, we performed cyclic voltammetry (CV) under polarized magnetic fields to provide a unified scale to quantify and compare DNA chirality. We observed the largest electron spin polarization in DNA structures with opposite chiral senses, which is consistent with the effect of chiral-induced spin selectivity (CISS). Spin polarization is weaker among DNA topologies of the same chiral arrangement, with DNA triplexes exhibiting the strongest CISS. Within DNA duplexes, spin polarization is further reduced depending on the sequence, with fewer guanine-cytosine (GC) pairs displaying a weaker CISS likely due to localized variations in chirality. Surprisingly, spin polarization is vectorial along the DNA duplex while presenting the smallest variation when the transportation directions of electrons become opposite. The four factors, chiral sense, topology, sequence, and directionality of electron transportation, delineate hierarchical contributions to molecular chirality, with profound implications ranging from spintronics to molecular recognitions.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}