Spin-Lattice Relaxation and Spin-Phonon Coupling of ns1 Metal Ions at the Surface.

IF 4.8 2区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry Letters Pub Date : 2024-07-05 DOI:10.1021/acs.jpclett.4c01634
Paolo Cleto Bruzzese, Yu-Kai Liao, Lorenzo Donà, Bartolomeo Civalleri, Enrico Salvadori, Mario Chiesa
{"title":"Spin-Lattice Relaxation and Spin-Phonon Coupling of <i>n</i>s<sup>1</sup> Metal Ions at the Surface.","authors":"Paolo Cleto Bruzzese, Yu-Kai Liao, Lorenzo Donà, Bartolomeo Civalleri, Enrico Salvadori, Mario Chiesa","doi":"10.1021/acs.jpclett.4c01634","DOIUrl":null,"url":null,"abstract":"<p><p>To use transition metal ions for spin-based applications, it is essential to understand fundamental contributions to electron spin relaxation in different ligand environments. For example, to serve as building blocks for a device, transition metal ion-based molecular qubits must be organized on surfaces and preserve long electron spin relaxation times, up to room temperature. Here we propose monovalent group 12 ions (Zn<sup>+</sup> and Cd<sup>+</sup>) as potential electronic metal qubits with an <i>n</i>s<sup>1</sup> ground state. The relaxation properties of Zn<sup>+</sup> and Cd<sup>+</sup>, stabilized at the interface of porous aluminosilicates, are investigated and benchmarked against vanadium (3d<sup>1</sup>) and copper (3d<sup>9</sup>) ions. The spin-phonon coupling has been evaluated through DFT modeling and found to be negligible for the <i>n</i>s<sup>1</sup> states, explaining the long coherence time, up to 2 μs, at room temperature. These so far unexplored metal qubits may represent viable candidates for room temperature quantum operations and sensing.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c01634","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

To use transition metal ions for spin-based applications, it is essential to understand fundamental contributions to electron spin relaxation in different ligand environments. For example, to serve as building blocks for a device, transition metal ion-based molecular qubits must be organized on surfaces and preserve long electron spin relaxation times, up to room temperature. Here we propose monovalent group 12 ions (Zn+ and Cd+) as potential electronic metal qubits with an ns1 ground state. The relaxation properties of Zn+ and Cd+, stabilized at the interface of porous aluminosilicates, are investigated and benchmarked against vanadium (3d1) and copper (3d9) ions. The spin-phonon coupling has been evaluated through DFT modeling and found to be negligible for the ns1 states, explaining the long coherence time, up to 2 μs, at room temperature. These so far unexplored metal qubits may represent viable candidates for room temperature quantum operations and sensing.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ns1 金属离子在表面的自旋-晶格弛豫和自旋-峰耦合。
要将过渡金属离子用于自旋应用,就必须了解不同配体环境中电子自旋弛豫的基本作用。例如,过渡金属离子分子量子比特必须在表面上组织起来,并在室温下保持较长的电子自旋弛豫时间,才能作为器件的构件。在此,我们提议将第 12 族一价离子(Zn+ 和 Cd+)作为具有 ns1 基态的潜在电子金属量子比特。我们对稳定在多孔铝硅酸盐界面上的 Zn+ 和 Cd+ 的弛豫特性进行了研究,并以钒(3d1)和铜(3d9)离子为基准。通过 DFT 建模对自旋-声子耦合进行了评估,发现 ns1 状态的自旋-声子耦合可以忽略不计,这也解释了室温下相干时间长达 2 μs 的原因。这些迄今尚未探索的金属量子比特可能是室温量子操作和传感的可行候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
期刊最新文献
Chirality Determination of Nanocrystals by Electron Crystallography. Beyond Shell-Filling: Strong Enhancement of Electron Affinity of Metal Clusters through a Noninvasive Oriented External Electric Field. Enhanced Thermally Activated Delayed Fluorescence by Sole Coordination: From an Organic Molecule to Its Zinc Complex. Is Ortho-Terphenyl a Rigid Glass Former? Marcus Theory and Long-Range Activationless Transport in Molecular Junctions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1