Thermal Activation of Anti-Stokes Photoluminescence in CsPbBr3 Perovskite Nanocrystals: The Role of Surface Polaron States.

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2024-07-05 DOI:10.1021/acsnano.4c03548
Kylie M Lytle, Emma L Brass, Benjamin J Roman, Matthew T Sheldon
{"title":"Thermal Activation of Anti-Stokes Photoluminescence in CsPbBr<sub>3</sub> Perovskite Nanocrystals: The Role of Surface Polaron States.","authors":"Kylie M Lytle, Emma L Brass, Benjamin J Roman, Matthew T Sheldon","doi":"10.1021/acsnano.4c03548","DOIUrl":null,"url":null,"abstract":"<p><p>Optically driven cooling of a material, or optical refrigeration, is possible when optical up-conversion via anti-Stokes photoluminescence (ASPL) is achieved with near-unity quantum yield. The recent demonstration of optical cooling of CsPbBr<sub>3</sub> perovskite nanocrystals (NCs) has provided a path forward in the development of semiconductor-based optical refrigeration strategies. However, the mechanism of ASPL in CsPbBr<sub>3</sub> NCs is not yet settled, and the prospects for cooling technologies strongly depend on details of the mechanism. By analyzing the Arrhenius behavior of ASPL in CsPbBr<sub>3</sub> NCs, we investigated the relationship between the average energy gained per photon during up conversion, Δ<i>E</i>, and the thermal activation energy, <i>E</i><sub>a</sub>. We find that <i>E</i><sub>a</sub> is systematically larger than Δ<i>E</i>, and that <i>E</i><sub>a</sub> increases for larger Δ<i>E</i>. We suggest that the additional energetic cost is due to a rearrangement of the crystal lattice as charge carriers pass from surface localized, structurally distinct sub-gap polaron states to the free exciton state during up-conversion. Our interpretation is further corroborated by quantifying the impact of ligand coverage on the NC surface. These findings help inform the development of CsPbBr<sub>3</sub> NCs for applications in optical refrigeration.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c03548","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Optically driven cooling of a material, or optical refrigeration, is possible when optical up-conversion via anti-Stokes photoluminescence (ASPL) is achieved with near-unity quantum yield. The recent demonstration of optical cooling of CsPbBr3 perovskite nanocrystals (NCs) has provided a path forward in the development of semiconductor-based optical refrigeration strategies. However, the mechanism of ASPL in CsPbBr3 NCs is not yet settled, and the prospects for cooling technologies strongly depend on details of the mechanism. By analyzing the Arrhenius behavior of ASPL in CsPbBr3 NCs, we investigated the relationship between the average energy gained per photon during up conversion, ΔE, and the thermal activation energy, Ea. We find that Ea is systematically larger than ΔE, and that Ea increases for larger ΔE. We suggest that the additional energetic cost is due to a rearrangement of the crystal lattice as charge carriers pass from surface localized, structurally distinct sub-gap polaron states to the free exciton state during up-conversion. Our interpretation is further corroborated by quantifying the impact of ligand coverage on the NC surface. These findings help inform the development of CsPbBr3 NCs for applications in optical refrigeration.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CsPbBr3 包晶石纳米晶体中反斯托克斯光致发光的热激活:表面极龙态的作用。
当通过反斯托克斯光致发光(ASPL)实现光学上转换并达到接近统一量子产率时,就有可能实现材料的光驱动冷却或光学制冷。最近对 CsPbBr3 包晶石纳米晶体(NCs)进行的光学制冷演示为基于半导体的光学制冷策略的发展提供了前进的道路。然而,CsPbBr3 NCs 中的 ASPL 机制尚未确定,冷却技术的前景在很大程度上取决于机制的细节。通过分析 CsPbBr3 NCs 中 ASPL 的阿伦尼乌斯行为,我们研究了向上转换过程中每个光子获得的平均能量 ΔE 与热活化能 Ea 之间的关系。我们发现,Ea 系统性地大于 ΔE,而且 ΔE 越大,Ea 越大。我们认为,额外的能量成本是由于电荷载流子在上转换过程中从表面局部、结构不同的亚间隙极子态转移到自由激子态时,晶格发生了重新排列。通过量化配体覆盖对 NC 表面的影响,进一步证实了我们的解释。这些发现有助于为开发用于光学制冷的 CsPbBr3 NCs 提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Generative Artificial Intelligence for Designing Multi-Scale Hydrogen Fuel Cell Catalyst Layer Nanostructures. Site-Selective Deposition of Silica Nanoframes and Nanocages onto Faceted Gold Nanostructures Using a Primer-free Tetraethyl Orthosilicate Synthesis. Universal Strike-Plating Strategy to Suppress Hydrogen Evolution for Improving Zinc Metal Reversibility. Issue Editorial Masthead Issue Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1