Rationally Designed L12-Pt2RhFe Intermetallic Catalyst with High CO-Tolerance for Alkaline Methanol Electrooxidation.

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2024-07-05 DOI:10.1002/smll.202403557
Lecheng Liang, Kaiyang Xu, Jinhui Liang, Shao Ye, Binwen Zeng, Quanbing Liu, Huiyu Song, Li Du, Zhiming Cui
{"title":"Rationally Designed L1<sub>2</sub>-Pt<sub>2</sub>RhFe Intermetallic Catalyst with High CO-Tolerance for Alkaline Methanol Electrooxidation.","authors":"Lecheng Liang, Kaiyang Xu, Jinhui Liang, Shao Ye, Binwen Zeng, Quanbing Liu, Huiyu Song, Li Du, Zhiming Cui","doi":"10.1002/smll.202403557","DOIUrl":null,"url":null,"abstract":"<p><p>It is a grand challenge to deep understanding of and precise control over functional sites for the rational design of highly efficient catalysts for methanol electrooxidation. Here, an L1<sub>2</sub>-Pt<sub>2</sub>RhFe intermetallic catalyst with integrated functional components is demonstrated, which exhibits exceptional CO tolerance. The Pt<sub>2</sub>RhFe/C achieves a superior mass activity of 6.43 A mg<sub>Pt</sub> <sup>-1</sup>, which is 2.23-fold and 3.53-fold higher than those of PtRu/C and Pt/C. Impressively, the Pt<sub>2</sub>RhFe/C exhibits a significant enhancement in durability owing to its high CO-tolerance and stability. Density functional theory calculations reveal that high performance of Pt<sub>2</sub>RhFe intermetallic catalyst arises from the synergistic effect: the strong OH binding energy (OHBE) at Fe sites induce stably adsorbed OH species and thus facilitate the dehydrogenation step of methanol via rapid hydrogen transfer, while moderate OHBE at Rh sites promote the formation of the transition state (Pt-CO···OH-Rh) with a low activation barrier for CO removal. This work provides new insights into the role of OH binding strength in the removal of CO species, which is beneficial for the rational design of highly efficient catalysts.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202403557","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

It is a grand challenge to deep understanding of and precise control over functional sites for the rational design of highly efficient catalysts for methanol electrooxidation. Here, an L12-Pt2RhFe intermetallic catalyst with integrated functional components is demonstrated, which exhibits exceptional CO tolerance. The Pt2RhFe/C achieves a superior mass activity of 6.43 A mgPt -1, which is 2.23-fold and 3.53-fold higher than those of PtRu/C and Pt/C. Impressively, the Pt2RhFe/C exhibits a significant enhancement in durability owing to its high CO-tolerance and stability. Density functional theory calculations reveal that high performance of Pt2RhFe intermetallic catalyst arises from the synergistic effect: the strong OH binding energy (OHBE) at Fe sites induce stably adsorbed OH species and thus facilitate the dehydrogenation step of methanol via rapid hydrogen transfer, while moderate OHBE at Rh sites promote the formation of the transition state (Pt-CO···OH-Rh) with a low activation barrier for CO removal. This work provides new insights into the role of OH binding strength in the removal of CO species, which is beneficial for the rational design of highly efficient catalysts.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
合理设计的 L12-Pt2RhFe 金属间催化剂具有较高的 CO 耐受性,可用于碱性甲醇电氧化。
如何深入了解并精确控制功能位点,以合理设计用于甲醇电氧化的高效催化剂,是一项巨大的挑战。这里展示的 L12-Pt2RhFe 金属间催化剂集成了多种功能成分,具有优异的 CO 耐受性。Pt2RhFe/C 的质量活性高达 6.43 A mgPt-1,是 PtRu/C 和 Pt/C 的 2.23 倍和 3.53 倍。令人印象深刻的是,由于 Pt2RhFe/C 具有较高的一氧化碳耐受性和稳定性,其耐久性得到了显著提高。密度泛函理论计算显示,Pt2RhFe 金属间催化剂的高性能源于协同效应:Fe 位点的强 OH 结合能(OHBE)诱导稳定吸附 OH 物种,从而通过快速氢转移促进甲醇的脱氢步骤;而 Rh 位点的适度 OHBE 则促进形成具有较低 CO 脱除活化势垒的过渡态(Pt-CO--OH-Rh)。这项工作为了解 OH 结合强度在去除 CO 物种中的作用提供了新的视角,有利于合理设计高效催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
A pH-Sensitive Glucose Oxidase and Hemin Coordination Micelle for Multi-Enzyme Cascade and Amplified Cancer Chemodynamic Therapy. Achieving Ultra-Long Cycle Life of Zn Anode Using ZnSn(OH)6 Coating Layer via Desolvation Effect and Uniform Zn2+ Flux. Advancing Zinc Anodes: Strategies for Enhanced Performance in Aqueous Zinc-Ion Batteries. Cation-π Interactions Based Conductive Hydrogels with Slide-Ring Structure Toward Super Long-Time in-air/Underwater Linear Sensing and Communication. Cutting-Edge Progress in Aqueous Zn-S Batteries: Innovations in Cathodes, Electrolytes, and Mediators.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1