Measurement of atmospheric amines and aminoamides by column adsorption/extraction and hydrophilic liquid chromatography-electrospray-tandem mass spectrometry
Kentaro Saeki, Kazuya Ikari, Shin-Ichi Ohira, Kei Toda
{"title":"Measurement of atmospheric amines and aminoamides by column adsorption/extraction and hydrophilic liquid chromatography-electrospray-tandem mass spectrometry","authors":"Kentaro Saeki, Kazuya Ikari, Shin-Ichi Ohira, Kei Toda","doi":"10.1007/s44211-024-00626-3","DOIUrl":null,"url":null,"abstract":"<div><p>Sampling and chromatography-mass spectrometry methods were investigated to measure atmospheric amines and aminoamides. Amines and their amide derivatives play significant roles in new particle formation (NPF) in the atmosphere, especially diamines and aminoamides have higher NPF potentials compared to monoamines. For amine sampling, silica gel tube collection and formic acid extraction gave good overall recoveries (>93 ± 8%) for mono-, di-, tri-, tetramines, and aminoamides. Two chromatography methods were subjected to analyze the extracted amines. One involved direct analysis using hydrophilic interaction liquid chromatography with carboxyl or diol group functioned separation column (carboxyl-HILIC or diol-HILIC), and the other utilized derivatization with 4-(<i>N</i>,<i>N</i>-dimethylaminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole (DBD-F) and subsequent reversed-phase chromatography (HPLC). Separated amines were detected by electrospray ionization and tandem mass spectrometry in both cases. DBD-F-HPLC method provided good sensitivity for mono- and all polyamines (limit of detection (LOD) < 4.6 nM, relative standard deviation (RSD) for 100 nM < 9.2%). However, aminoamides could not be detected by DBD-F-HPLC. Carboxyl-HILIC provided good sensitivities for mono- and diamines and aminoamides (LOD < 1.6 nM, RSD < 4.8%). Forest air measurement was performed and data obtained by carboxyl-HILIC and DBD-F-HPLC showed good agreement for 1,3-diaminopropane, 1,4-diaminobutane (putrescine) and 1,5-diaminopentane (cadaverine) (<i>R</i><sup>2</sup> = 0.9215–0.9739, <i>n</i> = 7–14). Carboxyl-HILIC method was the best for the amine analysis, and combination with silica gel tube sampling provides atmospheric monitoring available. The developed method can be used not only to study atmospheric chemistry of diamines and aminoamides but also to analyze flavor/odor of foods, flowers and wastes.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7802,"journal":{"name":"Analytical Sciences","volume":"40 10","pages":"1907 - 1918"},"PeriodicalIF":1.8000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Sciences","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s44211-024-00626-3","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Sampling and chromatography-mass spectrometry methods were investigated to measure atmospheric amines and aminoamides. Amines and their amide derivatives play significant roles in new particle formation (NPF) in the atmosphere, especially diamines and aminoamides have higher NPF potentials compared to monoamines. For amine sampling, silica gel tube collection and formic acid extraction gave good overall recoveries (>93 ± 8%) for mono-, di-, tri-, tetramines, and aminoamides. Two chromatography methods were subjected to analyze the extracted amines. One involved direct analysis using hydrophilic interaction liquid chromatography with carboxyl or diol group functioned separation column (carboxyl-HILIC or diol-HILIC), and the other utilized derivatization with 4-(N,N-dimethylaminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole (DBD-F) and subsequent reversed-phase chromatography (HPLC). Separated amines were detected by electrospray ionization and tandem mass spectrometry in both cases. DBD-F-HPLC method provided good sensitivity for mono- and all polyamines (limit of detection (LOD) < 4.6 nM, relative standard deviation (RSD) for 100 nM < 9.2%). However, aminoamides could not be detected by DBD-F-HPLC. Carboxyl-HILIC provided good sensitivities for mono- and diamines and aminoamides (LOD < 1.6 nM, RSD < 4.8%). Forest air measurement was performed and data obtained by carboxyl-HILIC and DBD-F-HPLC showed good agreement for 1,3-diaminopropane, 1,4-diaminobutane (putrescine) and 1,5-diaminopentane (cadaverine) (R2 = 0.9215–0.9739, n = 7–14). Carboxyl-HILIC method was the best for the amine analysis, and combination with silica gel tube sampling provides atmospheric monitoring available. The developed method can be used not only to study atmospheric chemistry of diamines and aminoamides but also to analyze flavor/odor of foods, flowers and wastes.
期刊介绍:
Analytical Sciences is an international journal published monthly by The Japan Society for Analytical Chemistry. The journal publishes papers on all aspects of the theory and practice of analytical sciences, including fundamental and applied, inorganic and organic, wet chemical and instrumental methods.
This publication is supported in part by the Grant-in-Aid for Publication of Scientific Research Result of the Japanese Ministry of Education, Culture, Sports, Science and Technology.