Biplav Shrestha , Sisi Yang , Lauren Griffith , Julia Ma , Fuxuan Wang , Hui Liu , Qiong Zhao , Yanming Du , Jiming Zhang , Jinhong Chang , Ju-Tao Guo
{"title":"Discovery of hepatitis B virus subviral particle biogenesis inhibitors from a bioactive compound library","authors":"Biplav Shrestha , Sisi Yang , Lauren Griffith , Julia Ma , Fuxuan Wang , Hui Liu , Qiong Zhao , Yanming Du , Jiming Zhang , Jinhong Chang , Ju-Tao Guo","doi":"10.1016/j.antiviral.2024.105955","DOIUrl":null,"url":null,"abstract":"<div><p>High levels of hepatitis B virus (HBV) surface antigen (HBsAg) in the blood of chronic HBV carriers are considered to drive the exhaustion of antigen-specific T and B lymphocytes and thus responsible for the persistence of infection. Accordingly, therapeutic elimination of HBsAg may facilitate the activation of adaptive antiviral immune responses against HBV and achieve a functional cure of chronic hepatitis B. We discovered recently that an amphipathic alpha helix spanning W156 to R169 of HBV small envelope (S) protein plays an essential role in the morphogenesis of subviral particles (SVPs) and metabolism of S protein. We thus hypothesized that pharmacological disruption of SVP morphogenesis may induce intracellular degradation of S protein and reduce HBsAg secretion. To identify inhibitors of SVP biogenesis, we screened 4417 bioactive compounds with a HepG2-derived cell line expressing HBV S protein and efficiently secreting small spherical SVPs. The screen identified 24 compounds that reduced intracellular SVPs and secreted HBsAg in a concentration-dependent manner. However, 18 of those compounds inhibited the secretion of HBsAg and HBeAg in HBV replicon transfected HepG2 cells at similar efficiency, suggesting each of those compounds may disrupt a common cellular function required for the synthesis and/or secretion of these viral proteins. Interestingly, lycorine more efficiently inhibited the secretion of HBsAg in HepG2 cells transfected with HBV replicons, HepG2.2.15 cells and HBV infected - HepG2 cells expressing sodium taurocholate cotransporting polypeptide (NTCP). The structure activity relationship and antiviral mechanism of lycorine against HBV have been determined.</p></div>","PeriodicalId":8259,"journal":{"name":"Antiviral research","volume":"228 ","pages":"Article 105955"},"PeriodicalIF":4.5000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antiviral research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166354224001645","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
High levels of hepatitis B virus (HBV) surface antigen (HBsAg) in the blood of chronic HBV carriers are considered to drive the exhaustion of antigen-specific T and B lymphocytes and thus responsible for the persistence of infection. Accordingly, therapeutic elimination of HBsAg may facilitate the activation of adaptive antiviral immune responses against HBV and achieve a functional cure of chronic hepatitis B. We discovered recently that an amphipathic alpha helix spanning W156 to R169 of HBV small envelope (S) protein plays an essential role in the morphogenesis of subviral particles (SVPs) and metabolism of S protein. We thus hypothesized that pharmacological disruption of SVP morphogenesis may induce intracellular degradation of S protein and reduce HBsAg secretion. To identify inhibitors of SVP biogenesis, we screened 4417 bioactive compounds with a HepG2-derived cell line expressing HBV S protein and efficiently secreting small spherical SVPs. The screen identified 24 compounds that reduced intracellular SVPs and secreted HBsAg in a concentration-dependent manner. However, 18 of those compounds inhibited the secretion of HBsAg and HBeAg in HBV replicon transfected HepG2 cells at similar efficiency, suggesting each of those compounds may disrupt a common cellular function required for the synthesis and/or secretion of these viral proteins. Interestingly, lycorine more efficiently inhibited the secretion of HBsAg in HepG2 cells transfected with HBV replicons, HepG2.2.15 cells and HBV infected - HepG2 cells expressing sodium taurocholate cotransporting polypeptide (NTCP). The structure activity relationship and antiviral mechanism of lycorine against HBV have been determined.
期刊介绍:
Antiviral Research is a journal that focuses on various aspects of controlling viral infections in both humans and animals. It is a platform for publishing research reports, short communications, review articles, and commentaries. The journal covers a wide range of topics including antiviral drugs, antibodies, and host-response modifiers. These topics encompass their synthesis, in vitro and in vivo testing, as well as mechanisms of action. Additionally, the journal also publishes studies on the development of new or improved vaccines against viral infections in humans. It delves into assessing the safety of drugs and vaccines, tracking the evolution of drug or vaccine-resistant viruses, and developing effective countermeasures. Another area of interest includes the identification and validation of new drug targets. The journal further explores laboratory animal models of viral diseases, investigates the pathogenesis of viral diseases, and examines the mechanisms by which viruses avoid host immune responses.