Junyuan Cao, Hao Zhang, Jixiang Zhang, Jinlin Wang, Chen Li, Jin Ma, Zhengyu Ye, Yunting Zheng, Hong Liu, Gengfu Xiao, Wenhao Dai, Leike Zhang
{"title":"Screening of Botanical Drugs Reveals the Potential Anti-human Adenovirus Activity of Berberine.","authors":"Junyuan Cao, Hao Zhang, Jixiang Zhang, Jinlin Wang, Chen Li, Jin Ma, Zhengyu Ye, Yunting Zheng, Hong Liu, Gengfu Xiao, Wenhao Dai, Leike Zhang","doi":"10.1016/j.antiviral.2025.106105","DOIUrl":null,"url":null,"abstract":"<p><p>Human adenovirus (HAdV) is a significant viral pathogen that causes severe acute respiratory infections (SARIs) in children and immunocompromised patients. Currently, no specific treatment options are available for HAdV infections. This study used a green fluorescence protein-based, high-throughput screening (HTS) assay on a botanical drug library containing 3,697 botanical compounds to identify agents that could inhibit HAdV. Four compounds with anti-HAdV-C5 activity in the low-micromolar range were identified and inhibited other wild-type HAdVs known to cause SARIs. Among these compounds, 13-methylberberine chloride presented the highest select index values. Berberine is a commercially available natural product-derived isoquinoline alkaloid with multiple pharmacological effects and is widely used in Asian countries. We systematically evaluated the anti-HAdV activity of six berberine-derived compounds in vitro and performed a time-of-drug-addition assay to explore their antiviral modes of action. Mechanistic studies revealed that berberine and its analogs inhibit HAdV replication by downregulating the MAPK signaling pathway, particularly ERK activation, which is crucial for viral replication and progeny production. Our findings suggest that berberine is a promising candidate for the development of anti-HAdV therapies.</p>","PeriodicalId":8259,"journal":{"name":"Antiviral research","volume":" ","pages":"106105"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antiviral research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.antiviral.2025.106105","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Human adenovirus (HAdV) is a significant viral pathogen that causes severe acute respiratory infections (SARIs) in children and immunocompromised patients. Currently, no specific treatment options are available for HAdV infections. This study used a green fluorescence protein-based, high-throughput screening (HTS) assay on a botanical drug library containing 3,697 botanical compounds to identify agents that could inhibit HAdV. Four compounds with anti-HAdV-C5 activity in the low-micromolar range were identified and inhibited other wild-type HAdVs known to cause SARIs. Among these compounds, 13-methylberberine chloride presented the highest select index values. Berberine is a commercially available natural product-derived isoquinoline alkaloid with multiple pharmacological effects and is widely used in Asian countries. We systematically evaluated the anti-HAdV activity of six berberine-derived compounds in vitro and performed a time-of-drug-addition assay to explore their antiviral modes of action. Mechanistic studies revealed that berberine and its analogs inhibit HAdV replication by downregulating the MAPK signaling pathway, particularly ERK activation, which is crucial for viral replication and progeny production. Our findings suggest that berberine is a promising candidate for the development of anti-HAdV therapies.
期刊介绍:
Antiviral Research is a journal that focuses on various aspects of controlling viral infections in both humans and animals. It is a platform for publishing research reports, short communications, review articles, and commentaries. The journal covers a wide range of topics including antiviral drugs, antibodies, and host-response modifiers. These topics encompass their synthesis, in vitro and in vivo testing, as well as mechanisms of action. Additionally, the journal also publishes studies on the development of new or improved vaccines against viral infections in humans. It delves into assessing the safety of drugs and vaccines, tracking the evolution of drug or vaccine-resistant viruses, and developing effective countermeasures. Another area of interest includes the identification and validation of new drug targets. The journal further explores laboratory animal models of viral diseases, investigates the pathogenesis of viral diseases, and examines the mechanisms by which viruses avoid host immune responses.