Comparative analysis of Krüppel-like factors expression in the retinas of zebrafish and mice during development and after injury

IF 2.1 3区 医学 Q3 ENDOCRINOLOGY & METABOLISM General and comparative endocrinology Pub Date : 2024-07-02 DOI:10.1016/j.ygcen.2024.114579
José Ávila-Mendoza , Valeria A. Urban-Sosa , Iván Lazcano , Aurea Orozco , Maricela Luna , Carlos G. Martínez-Moreno , Carlos Arámburo
{"title":"Comparative analysis of Krüppel-like factors expression in the retinas of zebrafish and mice during development and after injury","authors":"José Ávila-Mendoza ,&nbsp;Valeria A. Urban-Sosa ,&nbsp;Iván Lazcano ,&nbsp;Aurea Orozco ,&nbsp;Maricela Luna ,&nbsp;Carlos G. Martínez-Moreno ,&nbsp;Carlos Arámburo","doi":"10.1016/j.ygcen.2024.114579","DOIUrl":null,"url":null,"abstract":"<div><p>The Krüppel-like factors (KLFs) have emerged as important transcriptional regulators of various cellular processes, including neural development. Some of them have been described as intrinsic factors involved in axon regeneration in the central nervous system (CNS) of vertebrates. Zebrafish are known for their ability to regenerate several tissues in adulthood, including the CNS, a capability lost during vertebrate evolution and absent in adult mammals. The role that KLFs could play in this differential ability remains unknown. Therefore, in this study, we analyzed the endogenous response of certain KLFs implicated in axon regeneration (KLFs 6, 7, 9, and 13) during retina development and after axon injury. The results showed that the expression of <em>Klfs 6</em>, <em>7</em>, and <em>13</em> decreases in the developing retina of mice but not in zebrafish, while the mRNA levels of <em>Klf9</em> strongly increase in both species. The response to injury was further analyzed using optic nerve crush (ONC) as a model of lesion. Our analysis during the acute phase (hours) demonstrated an induction of <em>Klfs 6</em> and <em>7</em> expression exclusively in the zebrafish retina, while <em>Klfs 9</em> and <em>13</em> mRNA levels increased in both species. Further analysis of the chronic response (days) showed that mRNA levels of <em>Klf6</em> transiently increase in the retinas of both zebrafish and mice, whereas those of <em>Klf7</em> decrease later after optic nerve injury. In addition, the analysis revealed that the expression of <em>Klf9</em> decreases, while that of <em>Klf13</em> increases in the retinas of zebrafish in response to optic nerve injury but remains unaltered in mice<strong>.</strong> Altogether, these findings support the hypothesis that KLFs may play a role in the differential axon regeneration abilities exhibited by fish and mice.</p></div>","PeriodicalId":12582,"journal":{"name":"General and comparative endocrinology","volume":"356 ","pages":"Article 114579"},"PeriodicalIF":2.1000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0016648024001412/pdfft?md5=868fc1b3c68665abcff4678d66d567bc&pid=1-s2.0-S0016648024001412-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"General and comparative endocrinology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016648024001412","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

The Krüppel-like factors (KLFs) have emerged as important transcriptional regulators of various cellular processes, including neural development. Some of them have been described as intrinsic factors involved in axon regeneration in the central nervous system (CNS) of vertebrates. Zebrafish are known for their ability to regenerate several tissues in adulthood, including the CNS, a capability lost during vertebrate evolution and absent in adult mammals. The role that KLFs could play in this differential ability remains unknown. Therefore, in this study, we analyzed the endogenous response of certain KLFs implicated in axon regeneration (KLFs 6, 7, 9, and 13) during retina development and after axon injury. The results showed that the expression of Klfs 6, 7, and 13 decreases in the developing retina of mice but not in zebrafish, while the mRNA levels of Klf9 strongly increase in both species. The response to injury was further analyzed using optic nerve crush (ONC) as a model of lesion. Our analysis during the acute phase (hours) demonstrated an induction of Klfs 6 and 7 expression exclusively in the zebrafish retina, while Klfs 9 and 13 mRNA levels increased in both species. Further analysis of the chronic response (days) showed that mRNA levels of Klf6 transiently increase in the retinas of both zebrafish and mice, whereas those of Klf7 decrease later after optic nerve injury. In addition, the analysis revealed that the expression of Klf9 decreases, while that of Klf13 increases in the retinas of zebrafish in response to optic nerve injury but remains unaltered in mice. Altogether, these findings support the hypothesis that KLFs may play a role in the differential axon regeneration abilities exhibited by fish and mice.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
斑马鱼和小鼠视网膜发育过程中及损伤后克鲁珀尔样因子表达的比较分析。
克鲁珀尔样因子(KLFs)已成为包括神经发育在内的各种细胞过程的重要转录调节因子。其中一些因子已被描述为参与脊椎动物中枢神经系统(CNS)轴突再生的内在因子。斑马鱼因其在成年后能再生多种组织(包括中枢神经系统)而闻名,这种能力在脊椎动物进化过程中丧失,成年哺乳动物也不具备这种能力。KLFs 在这种能力差异中可能扮演的角色仍然未知。因此,在本研究中,我们分析了与轴突再生有关的某些 KLFs(KLFs 6、7、9 和 13)在视网膜发育过程中和轴突损伤后的内源性反应。结果表明,Klfs 6、7 和 13 在小鼠视网膜发育过程中的表达量减少,但在斑马鱼视网膜发育过程中的表达量却没有减少,而 Klf9 的 mRNA 水平在这两种鱼类中都强烈增加。以视神经挤压(ONC)为病变模型,进一步分析了损伤的反应。我们在急性期(数小时)的分析表明,斑马鱼视网膜只诱导了 Klfs 6 和 7 的表达,而两种鱼的 Klfs 9 和 13 mRNA 水平都有所增加。对慢性反应(天数)的进一步分析表明,斑马鱼和小鼠视网膜中 Klf6 的 mRNA 水平都会短暂升高,而 Klf7 的 mRNA 水平在视神经损伤后会降低。此外,分析还发现,斑马鱼视网膜在视神经损伤后,Klf9的表达量减少,而Klf13的表达量增加,但在小鼠视网膜中却没有变化。总之,这些发现支持了 KLFs 可能在鱼类和小鼠表现出的不同轴突再生能力中发挥作用的假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
General and comparative endocrinology
General and comparative endocrinology 医学-内分泌学与代谢
CiteScore
5.60
自引率
7.40%
发文量
120
审稿时长
2 months
期刊介绍: General and Comparative Endocrinology publishes articles concerned with the many complexities of vertebrate and invertebrate endocrine systems at the sub-molecular, molecular, cellular and organismal levels of analysis.
期刊最新文献
Pharmacological function of melanocortin-3 receptor in goldfish (Carassius auratus). Enhanced expression of Cyp17a1 and production of DHEA-S in the liver of late-pregnant rats. Stress Axis: Molecular and Cellular Regulation of the HPI/HPA Axis. Zebra finches (Taeniopygia castanotis) display varying degrees of stress resilience in response to constant light. Gonadotropin-releasing hormone II and its receptor regulate motility, morphology, and kinematics of porcine spermatozoa in vitro.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1