The long but necessary road to responsible use of large language models in healthcare research

IF 12.4 1区 医学 Q1 HEALTH CARE SCIENCES & SERVICES NPJ Digital Medicine Pub Date : 2024-07-04 DOI:10.1038/s41746-024-01180-y
Jethro C. C. Kwong, Serena C. Y. Wang, Grace C. Nickel, Giovanni E. Cacciamani, Joseph C. Kvedar
{"title":"The long but necessary road to responsible use of large language models in healthcare research","authors":"Jethro C. C. Kwong, Serena C. Y. Wang, Grace C. Nickel, Giovanni E. Cacciamani, Joseph C. Kvedar","doi":"10.1038/s41746-024-01180-y","DOIUrl":null,"url":null,"abstract":"Large language models (LLMs) have shown promise in reducing time, costs, and errors associated with manual data extraction. A recent study demonstrated that LLMs outperformed natural language processing approaches in abstracting pathology report information. However, challenges include the risks of weakening critical thinking, propagating biases, and hallucinations, which may undermine the scientific method and disseminate inaccurate information. Incorporating suitable guidelines (e.g., CANGARU), should be encouraged to ensure responsible LLM use.","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":null,"pages":null},"PeriodicalIF":12.4000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41746-024-01180-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41746-024-01180-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Large language models (LLMs) have shown promise in reducing time, costs, and errors associated with manual data extraction. A recent study demonstrated that LLMs outperformed natural language processing approaches in abstracting pathology report information. However, challenges include the risks of weakening critical thinking, propagating biases, and hallucinations, which may undermine the scientific method and disseminate inaccurate information. Incorporating suitable guidelines (e.g., CANGARU), should be encouraged to ensure responsible LLM use.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在医疗保健研究中负责任地使用大型语言模型的道路漫长而又必要。
大语言模型(LLM)在减少与人工数据提取相关的时间、成本和错误方面大有可为。最近的一项研究表明,大语言模型在病理报告信息抽取方面的表现优于自然语言处理方法。然而,所面临的挑战包括削弱批判性思维、传播偏见和幻觉的风险,这可能会破坏科学方法并传播不准确的信息。应鼓励纳入适当的指南(如 CANGARU),以确保负责任地使用 LLM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
25.10
自引率
3.30%
发文量
170
审稿时长
15 weeks
期刊介绍: npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics. The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.
期刊最新文献
Automated decision making in Barrett’s oesophagus: development and deployment of a natural language processing tool The adaptation of a single institution diabetes care platform into a nationally available turnkey solution Deep learning based highly accurate transplanted bioengineered corneal equivalent thickness measurement using optical coherence tomography Artificial intelligence applied to coronary artery calcium scans (AI-CAC) significantly improves cardiovascular events prediction Bridging organ transcriptomics for advancing multiple organ toxicity assessment with a generative AI approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1