Sample size calculation for data reliability and diagnostic performance: a go-to review.

IF 3.7 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING European Radiology Experimental Pub Date : 2024-07-05 DOI:10.1186/s41747-024-00474-w
Caterina Beatrice Monti, Federico Ambrogi, Francesco Sardanelli
{"title":"Sample size calculation for data reliability and diagnostic performance: a go-to review.","authors":"Caterina Beatrice Monti, Federico Ambrogi, Francesco Sardanelli","doi":"10.1186/s41747-024-00474-w","DOIUrl":null,"url":null,"abstract":"<p><p>Sample size, namely the number of subjects that should be included in a study to reach the desired endpoint and statistical power, is a fundamental concept of scientific research. Indeed, sample size must be planned a priori, and tailored to the main endpoint of the study, to avoid including too many subjects, thus possibly exposing them to additional risks while also wasting time and resources, or too few subjects, failing to reach the desired purpose. We offer a simple, go-to review of methods for sample size calculation for studies concerning data reliability (repeatability/reproducibility) and diagnostic performance. For studies concerning data reliability, we considered Cohen's κ or intraclass correlation coefficient (ICC) for hypothesis testing, estimation of Cohen's κ or ICC, and Bland-Altman analyses. With regards to diagnostic performance, we considered accuracy or sensitivity/specificity versus reference standards, the comparison of diagnostic performances, and the comparisons of areas under the receiver operating characteristics curve. Finally, we considered the special cases of dropouts or retrospective case exclusions, multiple endpoints, lack of prior data estimates, and the selection of unusual thresholds for α and β errors. For the most frequent cases, we provide example of software freely available on the Internet.Relevance statement Sample size calculation is a fundamental factor influencing the quality of studies on repeatability/reproducibility and diagnostic performance in radiology.Key points• Sample size is a concept related to precision and statistical power.• It has ethical implications, especially when patients are exposed to risks.• Sample size should always be calculated before starting a study.• This review offers simple, go-to methods for sample size calculations.</p>","PeriodicalId":36926,"journal":{"name":"European Radiology Experimental","volume":"8 1","pages":"79"},"PeriodicalIF":3.7000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11224179/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Radiology Experimental","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41747-024-00474-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Sample size, namely the number of subjects that should be included in a study to reach the desired endpoint and statistical power, is a fundamental concept of scientific research. Indeed, sample size must be planned a priori, and tailored to the main endpoint of the study, to avoid including too many subjects, thus possibly exposing them to additional risks while also wasting time and resources, or too few subjects, failing to reach the desired purpose. We offer a simple, go-to review of methods for sample size calculation for studies concerning data reliability (repeatability/reproducibility) and diagnostic performance. For studies concerning data reliability, we considered Cohen's κ or intraclass correlation coefficient (ICC) for hypothesis testing, estimation of Cohen's κ or ICC, and Bland-Altman analyses. With regards to diagnostic performance, we considered accuracy or sensitivity/specificity versus reference standards, the comparison of diagnostic performances, and the comparisons of areas under the receiver operating characteristics curve. Finally, we considered the special cases of dropouts or retrospective case exclusions, multiple endpoints, lack of prior data estimates, and the selection of unusual thresholds for α and β errors. For the most frequent cases, we provide example of software freely available on the Internet.Relevance statement Sample size calculation is a fundamental factor influencing the quality of studies on repeatability/reproducibility and diagnostic performance in radiology.Key points• Sample size is a concept related to precision and statistical power.• It has ethical implications, especially when patients are exposed to risks.• Sample size should always be calculated before starting a study.• This review offers simple, go-to methods for sample size calculations.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有关数据可靠性和诊断性能的样本量计算:一篇最新综述。
样本量是科学研究的一个基本概念,即为达到预期终点和统计能力而应纳入研究的受试者人数。事实上,样本量必须事先规划,并根据研究的主要终点量身定制,以避免纳入过多受试者,从而可能使他们面临额外风险,同时浪费时间和资源;或纳入过少受试者,从而无法达到预期目的。我们对有关数据可靠性(可重复性/可再现性)和诊断性能的研究的样本量计算方法进行了简单的回顾。对于有关数据可靠性的研究,我们考虑了用于假设检验的科恩κ或类内相关系数(ICC)、科恩κ或ICC的估计以及布兰德-阿尔特曼分析。在诊断性能方面,我们考虑了准确性或灵敏度/特异性与参考标准的比较、诊断性能的比较以及接收者操作特征曲线下面积的比较。最后,我们还考虑了一些特殊情况,如辍学或回顾性病例排除、多终点、缺乏先前的数据估计以及选择不寻常的 α 和 β 误差阈值。对于最常见的情况,我们提供了可在互联网上免费获取的软件示例。相关性声明 样本大小计算是影响放射学重复性/可重复性和诊断性能研究质量的基本因素。关键点- 样本大小是一个与精确度和统计能力相关的概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
European Radiology Experimental
European Radiology Experimental Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
6.70
自引率
2.60%
发文量
56
审稿时长
18 weeks
期刊最新文献
An AI deep learning algorithm for detecting pulmonary nodules on ultra-low-dose CT in an emergency setting: a reader study. Evaluation of pulmonary artery pressure, blood indices, and myocardial microcirculation in rats returning from high altitude to moderate altitude. Image biomarkers and explainable AI: handcrafted features versus deep learned features. Technical feasibility of automated blur detection in digital mammography using convolutional neural network. Quantification of breast biopsy clip marker artifact on routine breast MRI sequences: a phantom study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1