Jie Bai , Xia Yun , Xuguang Xu , Shanshan Liu , Sidegeer Zhang , Taodi Liu , Yan Zhang
{"title":"The proliferation and differentiation of spermatogonial stem cells in the frist wave of spermatogenesis in rats with Trib3 gene knockout","authors":"Jie Bai , Xia Yun , Xuguang Xu , Shanshan Liu , Sidegeer Zhang , Taodi Liu , Yan Zhang","doi":"10.1016/j.repbio.2024.100921","DOIUrl":null,"url":null,"abstract":"<div><p>This study explores the effects of <em>Trib3</em> gene knockout on adult male rat spermatogenesis. Using CRISPR/Cas9, we knocked out the <em>Trib3</em> gene in Wistar rats. Results indicate altered expression of PLZF, ID4, and c-KIT in knockout rats, suggesting impaired spermatogonial stem cell proliferation and differentiation. Histological analysis reveals reduced seminiferous tubule area and decreased spermatocyte numbers. Mating experiments demonstrate reduced offspring rates after the second self-mating in knockout rats. SYCP3, a meiosis marker, shows elevated expression in knockout rat testes at 14 days postpartum, suggesting an impact on reproductive processes. ELISA results indicate decreased testosterone, FSH, and FGF9 levels in knockout rat testicular tissues. In conclusion, <em>Trib3</em> gene deletion may impede spermatogonial self-renewal and promote differentiation through the FSH-FGF9- c-KIT interaction and p38MAPK pathway, affecting reproductive capacity. These findings contribute to understanding the molecular mechanisms regulating spermatogenesis.</p></div>","PeriodicalId":21018,"journal":{"name":"Reproductive biology","volume":"24 3","pages":"Article 100921"},"PeriodicalIF":2.5000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproductive biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1642431X24000676","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"REPRODUCTIVE BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores the effects of Trib3 gene knockout on adult male rat spermatogenesis. Using CRISPR/Cas9, we knocked out the Trib3 gene in Wistar rats. Results indicate altered expression of PLZF, ID4, and c-KIT in knockout rats, suggesting impaired spermatogonial stem cell proliferation and differentiation. Histological analysis reveals reduced seminiferous tubule area and decreased spermatocyte numbers. Mating experiments demonstrate reduced offspring rates after the second self-mating in knockout rats. SYCP3, a meiosis marker, shows elevated expression in knockout rat testes at 14 days postpartum, suggesting an impact on reproductive processes. ELISA results indicate decreased testosterone, FSH, and FGF9 levels in knockout rat testicular tissues. In conclusion, Trib3 gene deletion may impede spermatogonial self-renewal and promote differentiation through the FSH-FGF9- c-KIT interaction and p38MAPK pathway, affecting reproductive capacity. These findings contribute to understanding the molecular mechanisms regulating spermatogenesis.
期刊介绍:
An official journal of the Society for Biology of Reproduction and the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn, Poland.
Reproductive Biology is an international, peer-reviewed journal covering all aspects of reproduction in vertebrates. The journal invites original research papers, short communications, review articles and commentaries dealing with reproductive physiology, endocrinology, immunology, molecular and cellular biology, receptor studies, animal breeding as well as andrology, embryology, infertility, assisted reproduction and contraception. Papers from both basic and clinical research will be considered.