The Role of Continental Alkaline Magmatism in Mantle Carbon Outflux Constrained by a Machine Learning Analysis of Zircon

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Geophysical Research Letters Pub Date : 2024-07-04 DOI:10.1029/2023GL106847
Lu Wang, Jia Liu, Christopher J. Spencer, Sensen Wu, Anzhou Li, Chengfeng Qiu, Qi Wu, Zubing Jia, Zizhen Wang, Hao Sun, Qun-Ke Xia
{"title":"The Role of Continental Alkaline Magmatism in Mantle Carbon Outflux Constrained by a Machine Learning Analysis of Zircon","authors":"Lu Wang,&nbsp;Jia Liu,&nbsp;Christopher J. Spencer,&nbsp;Sensen Wu,&nbsp;Anzhou Li,&nbsp;Chengfeng Qiu,&nbsp;Qi Wu,&nbsp;Zubing Jia,&nbsp;Zizhen Wang,&nbsp;Hao Sun,&nbsp;Qun-Ke Xia","doi":"10.1029/2023GL106847","DOIUrl":null,"url":null,"abstract":"<p>Continental alkaline magmatism has been suggested to play a significant role in releasing deep mantle carbon into the atmosphere, which can greatly impact the global climate. However, the temporal variations of alkaline magmatism and their potential to modulate climate over geologic time remain poorly constrained. The detrital zircon record is a frequently used proxy for tracking secular variations in particular magmatism. Here, we use a novel machine-learning technique to discriminate zircon from carbonatites, kimberlites, and other alkaline rocks. A global compilation of detrital zircon yields continental alkaline magmatic flare-ups between 1,050−850, 650−500, 250−200, and 50−0 Ma. Our estimates indicate relatively elevated contributions of total magmatic carbon outgassing from alkaline magmatism during the aforementioned magmatic flare-ups. We infer that anomalous alkaline magmatism may influence global warming during specific intervals of geologic time, but when they are not that voluminous or persistent extensive arc magmatism may drive warming conditions.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023GL106847","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023GL106847","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Continental alkaline magmatism has been suggested to play a significant role in releasing deep mantle carbon into the atmosphere, which can greatly impact the global climate. However, the temporal variations of alkaline magmatism and their potential to modulate climate over geologic time remain poorly constrained. The detrital zircon record is a frequently used proxy for tracking secular variations in particular magmatism. Here, we use a novel machine-learning technique to discriminate zircon from carbonatites, kimberlites, and other alkaline rocks. A global compilation of detrital zircon yields continental alkaline magmatic flare-ups between 1,050−850, 650−500, 250−200, and 50−0 Ma. Our estimates indicate relatively elevated contributions of total magmatic carbon outgassing from alkaline magmatism during the aforementioned magmatic flare-ups. We infer that anomalous alkaline magmatism may influence global warming during specific intervals of geologic time, but when they are not that voluminous or persistent extensive arc magmatism may drive warming conditions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
锆石机器学习分析制约大陆碱性岩浆活动在地幔碳外流中的作用
有人认为,大陆碱性岩浆活动在向大气释放深地幔碳方面发挥着重要作用,这可能对全球气候产生重大影响。然而,碱性岩浆活动的时间变化及其在地质年代中调节气候的潜力仍未得到充分证实。碎屑锆石记录是跟踪特定岩浆活动的长期变化的常用替代物。在这里,我们使用一种新颖的机器学习技术来鉴别碳酸盐岩、金伯利岩和其他碱性岩石中的锆石。通过对全球锆英石碎片的汇编,我们得出了1050-850 Ma、650-500 Ma、250-200 Ma和50-0 Ma之间的大陆碱性岩浆爆发。我们的估算表明,在上述岩浆爆发期间,碱性岩浆活动产生的岩浆碳排气总量相对较高。我们推断,异常碱性岩浆活动可能会在地质年代的特定时期影响全球变暖,但当它们不是那么大量或持续时,广泛的弧形岩浆活动可能会推动气候变暖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
期刊最新文献
Realistic Precipitation Diurnal Cycle in Global Convection-Permitting Models by Resolving Mesoscale Convective Systems Guide Field Dependence of Energy Conversion and Magnetic Topologies in Reconnection Turbulent Outflow Warming Tropical Indian Ocean Wets the Tibetan Plateau Direct Observations of Magnetic Reconnections at the Magnetopause of the Martian Mini-Magnetosphere Physics-Informed Convolutional Decoder (PICD): A Novel Approach for Direct Inversion of Heterogeneous Subsurface Flow
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1