首页 > 最新文献

Geophysical Research Letters最新文献

英文 中文
Ocean Outgassing of Methyl Chloroform as an Underestimated Source of Emission 一种被低估的排放源甲基氯仿的海洋排放
IF 5.2 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2025-12-20 DOI: 10.1029/2025gl118618
Peidong Wang, Susan Solomon, Jeffery R. Scott, Shari A. Yvon-Lewis, Paul O. Wennberg, Ray F. Weiss, Matthew Rigby, Minde An
Methyl chloroform (MCF) is an ozone-depleting substance used as an industrial solvent. Its primary sink is oxidation by the hydroxyl radical (OH), making it a key tracer for estimating atmospheric oxidative capacity. Following Montreal Protocol regulations, MCF emissions declined rapidly after the 1990s. However, the recent atmospheric MCF decay suggests persistent emissions and/or declining OH (contradicting chemistry-climate models projecting increasing or stable OH). The air-sea exchange of MCF has been poorly constrained due to limited observations and simplified ocean representations. We simulate oceanic MCF fluxes using a modern ocean reanalysis and validate with depth-resolved observations. Results suggest the ocean has shifted from a net sink to a net source around 2005, outgassing 0.5 Gg yr−1 in the 2010s (up to 30% of inferred MCF emissions). This ocean outgassing is an order of magnitude larger than previous estimates, and accounts for up to a third of the model-observation discrepancy in OH.
甲基氯仿(MCF)是一种用作工业溶剂的臭氧消耗物质。它的主要汇是被羟基自由基(OH)氧化,使其成为估计大气氧化能力的关键示踪剂。根据《蒙特利尔议定书》的规定,MCF的排放量在20世纪90年代后迅速下降。然而,最近的大气MCF衰减表明持续排放和/或OH下降(与预测OH增加或稳定的化学-气候模式相矛盾)。由于观测有限和海洋表征简化,MCF的海气交换一直受到很差的约束。我们利用现代海洋再分析模拟海洋MCF通量,并用深度分辨观测进行验证。结果表明,海洋在2005年左右从净汇转变为净源,在2010年代每年释放0.5 g气体(高达推断MCF排放量的30%)。这种海洋释放的气体比以前的估计要大一个数量级,并且占到模型观测到的OH差异的三分之一。
{"title":"Ocean Outgassing of Methyl Chloroform as an Underestimated Source of Emission","authors":"Peidong Wang, Susan Solomon, Jeffery R. Scott, Shari A. Yvon-Lewis, Paul O. Wennberg, Ray F. Weiss, Matthew Rigby, Minde An","doi":"10.1029/2025gl118618","DOIUrl":"https://doi.org/10.1029/2025gl118618","url":null,"abstract":"Methyl chloroform (MCF) is an ozone-depleting substance used as an industrial solvent. Its primary sink is oxidation by the hydroxyl radical (OH), making it a key tracer for estimating atmospheric oxidative capacity. Following Montreal Protocol regulations, MCF emissions declined rapidly after the 1990s. However, the recent atmospheric MCF decay suggests persistent emissions and/or declining OH (contradicting chemistry-climate models projecting increasing or stable OH). The air-sea exchange of MCF has been poorly constrained due to limited observations and simplified ocean representations. We simulate oceanic MCF fluxes using a modern ocean reanalysis and validate with depth-resolved observations. Results suggest the ocean has shifted from a net sink to a net source around 2005, outgassing 0.5 Gg yr<sup>−1</sup> in the 2010s (up to 30% of inferred MCF emissions). This ocean outgassing is an order of magnitude larger than previous estimates, and accounts for up to a third of the model-observation discrepancy in OH.","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"68 1","pages":""},"PeriodicalIF":5.2,"publicationDate":"2025-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145796283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent Strengthening of the Western Pacific Hadley Circulation Driven by Tropical Inter-Basin Sea Surface Temperature Gradients 热带海盆间海温梯度驱动的西太平洋哈德利环流近期增强
IF 5.2 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2025-12-20 DOI: 10.1029/2025gl119527
Weiqian Xu, Wen Chen, Shangfeng Chen
The Western Pacific Hadley Circulation (WPHC), the strongest regional Hadley circulation (HC), plays a crucial role in regional and global climate variability. Observations since 1979 reveal a pronounced strengthening of the boreal spring WPHC in the Northern Hemisphere, but the contributions of internal variability versus external forcing remain unclear. Using large ensemble simulations, we find that approximately 71% of the recent strengthening is attributed to phase transitions in three key sea surface temperature (SST) gradients—tropical Western Pacific (TWP)-Western North Pacific, TWP-Tropical Eastern Pacific, and TWP-Tropical Indian Ocean, indicating an internal variability mode linked to the inter-basin SST gradient. Constraining future projections with skillful ensemble members based on these gradient phases reduces projection uncertainty by nearly 49% and suggests a likely weakening in coming decades. These results highlight the dominant role of internal variability and the importance of accurately representing tropical SST gradients for near-term regional HC projections.
西太平洋哈德利环流(WPHC)是最强的区域哈德利环流(HC),在区域和全球气候变化中起着至关重要的作用。自1979年以来的观测表明,北半球的寒带春季WPHC明显增强,但内部变率对外部强迫的贡献尚不清楚。通过大集合模拟,我们发现近71%的海表温度增强归因于三个关键海表温度梯度的相变:热带西太平洋(TWP)-北太平洋西部、热带东太平洋-热带东太平洋和热带印度洋,表明海表温度梯度与海盆间海表温度梯度存在内部变率模式。根据这些梯度阶段,用熟练的集合成员来约束未来的预估,可以减少近49%的预估不确定性,并表明未来几十年可能会减弱。这些结果强调了内部变率的主导作用,以及准确表示热带海温梯度对近期区域HC预测的重要性。
{"title":"Recent Strengthening of the Western Pacific Hadley Circulation Driven by Tropical Inter-Basin Sea Surface Temperature Gradients","authors":"Weiqian Xu, Wen Chen, Shangfeng Chen","doi":"10.1029/2025gl119527","DOIUrl":"https://doi.org/10.1029/2025gl119527","url":null,"abstract":"The Western Pacific Hadley Circulation (WPHC), the strongest regional Hadley circulation (HC), plays a crucial role in regional and global climate variability. Observations since 1979 reveal a pronounced strengthening of the boreal spring WPHC in the Northern Hemisphere, but the contributions of internal variability versus external forcing remain unclear. Using large ensemble simulations, we find that approximately 71% of the recent strengthening is attributed to phase transitions in three key sea surface temperature (SST) gradients—tropical Western Pacific (TWP)-Western North Pacific, TWP-Tropical Eastern Pacific, and TWP-Tropical Indian Ocean, indicating an internal variability mode linked to the inter-basin SST gradient. Constraining future projections with skillful ensemble members based on these gradient phases reduces projection uncertainty by nearly 49% and suggests a likely weakening in coming decades. These results highlight the dominant role of internal variability and the importance of accurately representing tropical SST gradients for near-term regional HC projections.","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"22 1","pages":""},"PeriodicalIF":5.2,"publicationDate":"2025-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145796284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solar Energetic Particle Events During May 2024 Geomagnetic Superstorm 2024年5月地磁暴期间的太阳高能粒子事件
IF 5.2 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2025-12-20 DOI: 10.1029/2025gl119559
Zhenghao She, Hui Zhu, Xiangliang Kong, Yao Chen, Yingying Zhao, Huicong Chen, Zhijie Qin, Wenqing Ma
Three solar energetic particle (SEP) events originating from solar active region 13664 occurred on 10–16 May 2024, coinciding with a geomagnetic superstorm. Using data from the Geostationary Operational Environmental Satellites and Meteorological Operational satellite-C, we investigate the energetic proton fluxes and east-west flux ratios in geostationary orbit, as well as the cutoff <span data-altimg="/cms/asset/a81ea4e5-ca92-4bf0-af94-675b97b1ddda/grl71757-math-0001.png"></span><mjx-container ctxtmenu_counter="155" ctxtmenu_oldtabindex="1" jax="CHTML" role="application" sre-explorer- style="font-size: 103%; position: relative;" tabindex="0"><mjx-math aria-hidden="true" location="graphic/grl71757-math-0001.png"><mjx-semantics><mjx-mrow><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-role="latinletter" data-semantic-speech="upper L" data-semantic-type="identifier"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display="inline" unselectable="on"><math altimg="urn:x-wiley:00948276:media:grl71757:grl71757-math-0001" display="inline" location="graphic/grl71757-math-0001.png" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi data-semantic-="" data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic-role="latinletter" data-semantic-speech="upper L" data-semantic-type="identifier">L</mi></mrow>$L$</annotation></semantics></math></mjx-assistive-mml></mjx-container>-shells measured in low Earth orbit during these events. For the first time, we find the rigidity dependence of the correlations between the east-west proton flux ratios and the <span data-altimg="/cms/asset/9ea725e6-4735-46a7-93ab-2a5601f85193/grl71757-math-0002.png"></span><mjx-container ctxtmenu_counter="156" ctxtmenu_oldtabindex="1" jax="CHTML" role="application" sre-explorer- style="font-size: 103%; position: relative;" tabindex="0"><mjx-math aria-hidden="true" location="graphic/grl71757-math-0002.png"><mjx-semantics><mjx-mrow data-semantic-annotation="clearspeak:simple;clearspeak:unit" data-semantic-children="0,1" data-semantic-content="2" data-semantic- data-semantic-role="implicit" data-semantic-speech="upper K p" data-semantic-type="infixop"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-parent="3" data-semantic-role="latinletter" data-semantic-type="identifier"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added="true" data-semantic- data-semantic-operator="infixop,⁢" data-semantic-parent="3" data-semantic-role="multiplication" data-semantic-type="operator" style="margin-left: 0.056em; margin-right: 0.056em;"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-parent="3" data-semantic-role="latinletter" data-semantic-type="identifier"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assi
2024年5月10日至16日发生了三次太阳高能粒子事件,源自太阳活动区13664,与一次地磁超级风暴同时发生。利用地球静止环境业务卫星和气象业务卫星c的数据,研究了在这些事件中地球静止轨道上的高能质子通量和东西通量比,以及在近地轨道上测量到的截止L$L$壳。我们首次发现了东西质子通量比与K±p$Kp$指数、D±s±t$Dst$指数和太阳风动压之间相关性的刚性依赖性。相关系数随质子刚度的增大先显著增大后减小。这种非单调变化可以很好地解释为穿透质子在西向和东向的半影刚性截断。结果表明,地磁屏蔽对SEP穿透有很强的影响。
{"title":"Solar Energetic Particle Events During May 2024 Geomagnetic Superstorm","authors":"Zhenghao She, Hui Zhu, Xiangliang Kong, Yao Chen, Yingying Zhao, Huicong Chen, Zhijie Qin, Wenqing Ma","doi":"10.1029/2025gl119559","DOIUrl":"https://doi.org/10.1029/2025gl119559","url":null,"abstract":"Three solar energetic particle (SEP) events originating from solar active region 13664 occurred on 10–16 May 2024, coinciding with a geomagnetic superstorm. Using data from the Geostationary Operational Environmental Satellites and Meteorological Operational satellite-C, we investigate the energetic proton fluxes and east-west flux ratios in geostationary orbit, as well as the cutoff &lt;span data-altimg=\"/cms/asset/a81ea4e5-ca92-4bf0-af94-675b97b1ddda/grl71757-math-0001.png\"&gt;&lt;/span&gt;&lt;mjx-container ctxtmenu_counter=\"155\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"&gt;&lt;mjx-math aria-hidden=\"true\" location=\"graphic/grl71757-math-0001.png\"&gt;&lt;mjx-semantics&gt;&lt;mjx-mrow&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper L\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;/mjx-mrow&gt;&lt;/mjx-semantics&gt;&lt;/mjx-math&gt;&lt;mjx-assistive-mml display=\"inline\" unselectable=\"on\"&gt;&lt;math altimg=\"urn:x-wiley:00948276:media:grl71757:grl71757-math-0001\" display=\"inline\" location=\"graphic/grl71757-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;semantics&gt;&lt;mrow&gt;&lt;mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper L\" data-semantic-type=\"identifier\"&gt;L&lt;/mi&gt;&lt;/mrow&gt;$L$&lt;/annotation&gt;&lt;/semantics&gt;&lt;/math&gt;&lt;/mjx-assistive-mml&gt;&lt;/mjx-container&gt;-shells measured in low Earth orbit during these events. For the first time, we find the rigidity dependence of the correlations between the east-west proton flux ratios and the &lt;span data-altimg=\"/cms/asset/9ea725e6-4735-46a7-93ab-2a5601f85193/grl71757-math-0002.png\"&gt;&lt;/span&gt;&lt;mjx-container ctxtmenu_counter=\"156\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"&gt;&lt;mjx-math aria-hidden=\"true\" location=\"graphic/grl71757-math-0002.png\"&gt;&lt;mjx-semantics&gt;&lt;mjx-mrow data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"0,1\" data-semantic-content=\"2\" data-semantic- data-semantic-role=\"implicit\" data-semantic-speech=\"upper K p\" data-semantic-type=\"infixop\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"3\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;/mjx-mrow&gt;&lt;/mjx-semantics&gt;&lt;/mjx-math&gt;&lt;mjx-assi","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"29 1","pages":""},"PeriodicalIF":5.2,"publicationDate":"2025-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145796285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global Survey of Whistler Mode Waves in the Earth's Magnetosheath Using THEMIS Observations 利用THEMIS观测对地球磁鞘中惠斯勒模式波的全球调查
IF 5.2 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2025-12-20 DOI: 10.1029/2025gl120404
Jingxuan Li, Xiao-Chen Shen, Wen Li, Qianli Ma
While it is known that whistler mode emissions are frequently detected in Earth's magnetosheath, their properties and dependence on solar wind conditions are not fully understood yet. In this study, we present the global distribution of whistler mode waves in the magnetosheath and their dependence on solar wind parameters, based on 7 years of data from three Time History of Events and Macroscale Interactions during Substorms (THEMIS) probes. Our findings reveal that whistler mode waves in magnetosheath peak near noon, spanning from 9 to 15 magnetic local times, with amplitudes reaching up to 100 pT. Furthermore, whistler mode wave amplitudes and occurrence rates are slightly larger on the dawnside than duskside. Additionally, whistler mode wave amplitudes tend to increase with increasing solar wind dynamic pressure and cone angle. These results provide valuable insights into the plasma and wave environment right upstream of Earth's magnetopause under various solar wind conditions.
虽然我们知道在地球的磁鞘中经常检测到口哨模式的辐射,但它们的特性和对太阳风条件的依赖还没有完全了解。在这项研究中,我们基于三个亚风暴期间事件和宏观尺度相互作用时间历史(THEMIS)探测器7年的数据,给出了磁鞘中哨声模式波的全球分布及其对太阳风参数的依赖。研究结果表明,在正午附近,在9 ~ 15个磁地方时,磁鞘中的哨声模波达到峰值,振幅可达100 pT,并且哨声模波的振幅和发生率在黎明侧略大于黄昏侧。哨声模态波幅值随太阳风动压和锥角的增大而增大。这些结果为在各种太阳风条件下地球磁层顶上游的等离子体和波环境提供了有价值的见解。
{"title":"Global Survey of Whistler Mode Waves in the Earth's Magnetosheath Using THEMIS Observations","authors":"Jingxuan Li, Xiao-Chen Shen, Wen Li, Qianli Ma","doi":"10.1029/2025gl120404","DOIUrl":"https://doi.org/10.1029/2025gl120404","url":null,"abstract":"While it is known that whistler mode emissions are frequently detected in Earth's magnetosheath, their properties and dependence on solar wind conditions are not fully understood yet. In this study, we present the global distribution of whistler mode waves in the magnetosheath and their dependence on solar wind parameters, based on 7 years of data from three Time History of Events and Macroscale Interactions during Substorms (THEMIS) probes. Our findings reveal that whistler mode waves in magnetosheath peak near noon, spanning from 9 to 15 magnetic local times, with amplitudes reaching up to 100 pT. Furthermore, whistler mode wave amplitudes and occurrence rates are slightly larger on the dawnside than duskside. Additionally, whistler mode wave amplitudes tend to increase with increasing solar wind dynamic pressure and cone angle. These results provide valuable insights into the plasma and wave environment right upstream of Earth's magnetopause under various solar wind conditions.","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"20 1","pages":""},"PeriodicalIF":5.2,"publicationDate":"2025-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145796288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Skillful Prediction of the Summer North Atlantic Oscillation: Opportunities From Circumglobal Waveguide Dynamics 夏季北大西洋涛动的巧妙预测:来自环全球波导动力学的机会
IF 5.2 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2025-12-20 DOI: 10.1029/2025gl118599
Yu Nie, Adam A. Scaife, Nick J. Dunstone, Steven C. Hardiman, Hong-Li Ren, Jinqing Zuo
The Summer North Atlantic Oscillation (SNAO) is the dominant climate pattern that affects heatwaves and droughts across Europe and downstream over Asia. However, its seasonal prediction remains challenging. While recent studies have identified stratospheric pathways for improving SNAO prediction, the role of tropospheric wave dynamics remains unclear. Using a latest-generation large-ensemble seasonal forecasting system, we find that the model exhibits limited SNAO prediction skill and underestimates downstream climate impacts. These limitations are associated with deficiencies in circumglobal waveguide dynamics. Subsampling ensemble members that best capture circulation anomalies near circumglobal teleconnection centers or tropical/monsoon rainfall that forces the teleconnection is accompanied by significantly improved SNAO prediction. Furthermore, deficiencies in the model circumglobal waveguide, particularly over the Mediterranean and North Atlantic with underestimated background zonal winds and erroneous curvature, may disrupt wave propagation. Refining these dynamical features could improve teleconnection representation and SNAO prediction, aiding summer climate risk mitigation.
夏季北大西洋涛动(SNAO)是影响整个欧洲和亚洲下游的热浪和干旱的主要气候模式。然而,其季节性预测仍然具有挑战性。虽然最近的研究已经确定了改善SNAO预测的平流层途径,但对流层波动动力学的作用仍不清楚。利用最新一代的大集合季节预报系统,我们发现该模式对SNAO的预测能力有限,低估了下游气候的影响。这些限制与环全球波导动力学的缺陷有关。亚采样集合成员最能捕捉到全球远相关中心附近的环流异常或强迫远相关的热带/季风降雨,这伴随着SNAO预测的显著改善。此外,模型环全球波导的缺陷,特别是在地中海和北大西洋地区,由于低估了背景纬向风和错误的曲率,可能会破坏波的传播。细化这些动态特征可以改善遥相关表征和SNAO预测,有助于缓解夏季气候风险。
{"title":"Skillful Prediction of the Summer North Atlantic Oscillation: Opportunities From Circumglobal Waveguide Dynamics","authors":"Yu Nie, Adam A. Scaife, Nick J. Dunstone, Steven C. Hardiman, Hong-Li Ren, Jinqing Zuo","doi":"10.1029/2025gl118599","DOIUrl":"https://doi.org/10.1029/2025gl118599","url":null,"abstract":"The Summer North Atlantic Oscillation (SNAO) is the dominant climate pattern that affects heatwaves and droughts across Europe and downstream over Asia. However, its seasonal prediction remains challenging. While recent studies have identified stratospheric pathways for improving SNAO prediction, the role of tropospheric wave dynamics remains unclear. Using a latest-generation large-ensemble seasonal forecasting system, we find that the model exhibits limited SNAO prediction skill and underestimates downstream climate impacts. These limitations are associated with deficiencies in circumglobal waveguide dynamics. Subsampling ensemble members that best capture circulation anomalies near circumglobal teleconnection centers or tropical/monsoon rainfall that forces the teleconnection is accompanied by significantly improved SNAO prediction. Furthermore, deficiencies in the model circumglobal waveguide, particularly over the Mediterranean and North Atlantic with underestimated background zonal winds and erroneous curvature, may disrupt wave propagation. Refining these dynamical features could improve teleconnection representation and SNAO prediction, aiding summer climate risk mitigation.","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"83 1","pages":""},"PeriodicalIF":5.2,"publicationDate":"2025-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145796307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantification of Scales Not Constrained by Observation Using Ensembles 不受观测约束的尺度量化
IF 5.2 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2025-12-19 DOI: 10.1029/2025gl116414
K. Andrew Peterson, Gregory C. Smith, Kamel Chikhar, Andrea Storto
Numerical models for ocean prediction typically resolve finer scales than can be constrained through assimilation of satellite measurements. As a result, variability not constrained by observation contributes to model forecast errors. Using an eddy-permitting, ensemble ocean prediction system we demonstrate the ensemble mean can be used to filter out the variability not constrained by observation, also showing how the length scales associated with this unconstrained variability can vary globally. In the process it shows that the limit of length scales not constrained by observation is a product of the system and not imposed through ensemble perturbations. Finally, it is shown the removal of length scales not constrained by observation through the use of the ensemble mean reduces error in surface currents relative to a single simulation.
海洋预报的数值模式通常比通过同化卫星测量得到的尺度更精细。因此,不受观测约束的变率会导致模式预报误差。利用允许涡旋的集合海洋预报系统,我们证明了集合平均值可以用来过滤掉不受观测约束的变率,也显示了与这种不受约束的变率相关的长度尺度如何在全球范围内变化。在此过程中,它表明不受观测约束的长度尺度极限是系统的产物,而不是通过系综摄动施加的。最后表明,通过使用集合平均值去除不受观测约束的长度尺度可以减少相对于单一模拟的表面电流误差。
{"title":"Quantification of Scales Not Constrained by Observation Using Ensembles","authors":"K. Andrew Peterson, Gregory C. Smith, Kamel Chikhar, Andrea Storto","doi":"10.1029/2025gl116414","DOIUrl":"https://doi.org/10.1029/2025gl116414","url":null,"abstract":"Numerical models for ocean prediction typically resolve finer scales than can be constrained through assimilation of satellite measurements. As a result, variability not constrained by observation contributes to model forecast errors. Using an eddy-permitting, ensemble ocean prediction system we demonstrate the ensemble mean can be used to filter out the variability not constrained by observation, also showing how the length scales associated with this unconstrained variability can vary globally. In the process it shows that the limit of length scales not constrained by observation is a product of the system and not imposed through ensemble perturbations. Finally, it is shown the removal of length scales not constrained by observation through the use of the ensemble mean reduces error in surface currents relative to a single simulation.","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"17 1","pages":""},"PeriodicalIF":5.2,"publicationDate":"2025-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145796289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantifying the Relationships Between Dynamics and Rainfall Intensity Along the Mei-Yu Front During PRECIP 2022 precp 2022期间梅雨锋动力与降水强度关系的量化
IF 5.2 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2025-12-19 DOI: 10.1029/2025gl117992
Jennifer C. DeHart, Michael M. Bell
Multi-Doppler analyses from the joint Prediction of Rainfall Extremes Campaign in the Pacific 2022 and Taiwan-Area Heavy rain Observation and Prediction Experiment field campaign are used to examine the relationships between dynamics and rainfall intensity in two Mei-Yu frontal periods. Statistics from oceanic rainfall over 8 days show a mean increase and a positive shift of the distributions of vertical vorticity, vertical motion, and divergence with increasing rain rate intensity. In regions of higher rain rates, mean ascent maximizes in the upper troposphere, low-level convergence intensifies over a deeper layer, and upper-level divergence strengthens. Stratiform rainfall is frequent in light rain rates below 5 mm <span data-altimg="/cms/asset/8050fcb8-1256-491a-b007-810ba5e024f0/grl71727-math-0001.png"></span><mjx-container ctxtmenu_counter="61" ctxtmenu_oldtabindex="1" jax="CHTML" role="application" sre-explorer- style="font-size: 103%; position: relative;" tabindex="0"><mjx-math aria-hidden="true" location="graphic/grl71727-math-0001.png"><mjx-semantics><mjx-mrow><mjx-msup data-semantic-children="0,3" data-semantic- data-semantic-role="latinletter" data-semantic-speech="normal h Superscript negative 1" data-semantic-type="superscript"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="4" data-semantic-role="latinletter" data-semantic-type="identifier"><mjx-c></mjx-c></mjx-mi><mjx-script style="vertical-align: 0.363em;"><mjx-mrow data-semantic-annotation="clearspeak:simple" data-semantic-children="2" data-semantic-content="1" data-semantic- data-semantic-parent="4" data-semantic-role="negative" data-semantic-type="prefixop" size="s"><mjx-mo data-semantic- data-semantic-operator="prefixop,−" data-semantic-parent="3" data-semantic-role="subtraction" data-semantic-type="operator" rspace="1"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="3" data-semantic-role="integer" data-semantic-type="number"><mjx-c></mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msup></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display="inline" unselectable="on"><math altimg="urn:x-wiley:00948276:media:grl71727:grl71727-math-0001" display="inline" location="graphic/grl71727-math-0001.png" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup data-semantic-="" data-semantic-children="0,3" data-semantic-role="latinletter" data-semantic-speech="normal h Superscript negative 1" data-semantic-type="superscript"><mi data-semantic-="" data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic-parent="4" data-semantic-role="latinletter" data-semantic-type="identifier" mathvariant="normal">h</mi><mrow data-semantic-="" data-semantic-annotation="clearspeak:simple" data-semantic-children="2" data-semantic-content="1" data-semantic-parent="4" data-semantic-role="negative" data
利用2022年太平洋极端降水预报和台湾地区暴雨观测预报实验场联合预报的多普勒分析,研究了两个梅雨锋面期的动力与降雨强度之间的关系。8 d的海洋降水统计表明,垂直涡度、垂直运动和辐散的分布随降雨强度的增加而增加和正偏移。在降雨率较高的地区,平均上升在对流层上层最大,低层辐合在更深的层上加强,高层辐散加强。层状降水在小雨率低于5毫米h−1${ mathm {h}}^{-1}$时较为常见,但对总降雨量贡献不大。10至50毫米h−1${ mathm {h}}^{-1}$之间的强对流降雨率仅占海洋上观测到的降雨格点的6%,但贡献了总体积降雨的45%以上。雷达分析表明,海洋梅雨降水中最大的雨积累优先发生在中强旋转对流中。
{"title":"Quantifying the Relationships Between Dynamics and Rainfall Intensity Along the Mei-Yu Front During PRECIP 2022","authors":"Jennifer C. DeHart, Michael M. Bell","doi":"10.1029/2025gl117992","DOIUrl":"https://doi.org/10.1029/2025gl117992","url":null,"abstract":"Multi-Doppler analyses from the joint Prediction of Rainfall Extremes Campaign in the Pacific 2022 and Taiwan-Area Heavy rain Observation and Prediction Experiment field campaign are used to examine the relationships between dynamics and rainfall intensity in two Mei-Yu frontal periods. Statistics from oceanic rainfall over 8 days show a mean increase and a positive shift of the distributions of vertical vorticity, vertical motion, and divergence with increasing rain rate intensity. In regions of higher rain rates, mean ascent maximizes in the upper troposphere, low-level convergence intensifies over a deeper layer, and upper-level divergence strengthens. Stratiform rainfall is frequent in light rain rates below 5 mm &lt;span data-altimg=\"/cms/asset/8050fcb8-1256-491a-b007-810ba5e024f0/grl71727-math-0001.png\"&gt;&lt;/span&gt;&lt;mjx-container ctxtmenu_counter=\"61\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"&gt;&lt;mjx-math aria-hidden=\"true\" location=\"graphic/grl71727-math-0001.png\"&gt;&lt;mjx-semantics&gt;&lt;mjx-mrow&gt;&lt;mjx-msup data-semantic-children=\"0,3\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"normal h Superscript negative 1\" data-semantic-type=\"superscript\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-script style=\"vertical-align: 0.363em;\"&gt;&lt;mjx-mrow data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"2\" data-semantic-content=\"1\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"negative\" data-semantic-type=\"prefixop\" size=\"s\"&gt;&lt;mjx-mo data-semantic- data-semantic-operator=\"prefixop,−\" data-semantic-parent=\"3\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\" rspace=\"1\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-mrow&gt;&lt;/mjx-script&gt;&lt;/mjx-msup&gt;&lt;/mjx-mrow&gt;&lt;/mjx-semantics&gt;&lt;/mjx-math&gt;&lt;mjx-assistive-mml display=\"inline\" unselectable=\"on\"&gt;&lt;math altimg=\"urn:x-wiley:00948276:media:grl71727:grl71727-math-0001\" display=\"inline\" location=\"graphic/grl71727-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;semantics&gt;&lt;mrow&gt;&lt;msup data-semantic-=\"\" data-semantic-children=\"0,3\" data-semantic-role=\"latinletter\" data-semantic-speech=\"normal h Superscript negative 1\" data-semantic-type=\"superscript\"&gt;&lt;mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" mathvariant=\"normal\"&gt;h&lt;/mi&gt;&lt;mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"2\" data-semantic-content=\"1\" data-semantic-parent=\"4\" data-semantic-role=\"negative\" data","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"85 1","pages":""},"PeriodicalIF":5.2,"publicationDate":"2025-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145796287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MOS and RREA Processes in Thunderclouds: Intensities and Spectral Shapes 雷雨云中的MOS和RREA过程:强度和光谱形状
IF 5.2 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2025-12-19 DOI: 10.1029/2025gl119264
Ashot Chilingarian, Mary Zazyan
The Relativistic Runaway Electron Avalanche (RREA) is the primary mechanism for enhancing atmospheric electron and gamma-ray fluxes when the electric field exceeds a density-dependent threshold. Another, non-threshold process—Modification of the Electron Energy Spectrum (MOS)—occurs when subcritical fields energize ambient electrons, shifting their spectrum to higher energies and increasing bremsstrahlung probability. MOS becomes dominant at high energies, where the RREA flux rapidly decreases, explaining the persistent detections of gamma rays above 50–60 MeV. We simulate gamma-ray yield over a wide range of Atmospheric Electric Field (AEF) to delineate MOS and RREA regimes and quantify spectral evolution with field strength. Experimental data from two Thunderstorm Ground Enhancements (TGEs) observed on 2 October 2024, are analyzed. By matching the exponential growth of measured count rates to modeled RREA yield, we derive the temporal evolution of the AEF during both TGEs, revealing the rate and magnitude of field strengthening that drive particle bursts and bridge the MOS–RREA transition in natural thunderstorms.
相对论失控电子雪崩(RREA)是电场超过密度相关阈值时大气电子和伽马射线通量增强的主要机制。另一种非阈值过程——电子能谱(MOS)的修改——发生在亚临界场激发环境电子时,将它们的能谱转移到更高的能量并增加轫致应变概率。MOS在高能量下占主导地位,在那里RREA通量迅速减少,解释了50-60 MeV以上的伽马射线的持续探测。我们模拟了大范围大气电场(AEF)的伽马射线产率,以描绘MOS和RREA制度,并量化场强的光谱演变。对2024年10月2日观测到的两次雷暴地面增强(TGEs)的实验数据进行了分析。通过将测量计数率的指数增长与模拟的RREA产量相匹配,我们得出了两次TGEs期间AEF的时间演变,揭示了驱动粒子爆发的场增强速率和强度,并在自然雷暴中架起了MOS-RREA转变的桥梁。
{"title":"MOS and RREA Processes in Thunderclouds: Intensities and Spectral Shapes","authors":"Ashot Chilingarian, Mary Zazyan","doi":"10.1029/2025gl119264","DOIUrl":"https://doi.org/10.1029/2025gl119264","url":null,"abstract":"The Relativistic Runaway Electron Avalanche (RREA) is the primary mechanism for enhancing atmospheric electron and gamma-ray fluxes when the electric field exceeds a density-dependent threshold. Another, non-threshold process—Modification of the Electron Energy Spectrum (MOS)—occurs when subcritical fields energize ambient electrons, shifting their spectrum to higher energies and increasing bremsstrahlung probability. MOS becomes dominant at high energies, where the RREA flux rapidly decreases, explaining the persistent detections of gamma rays above 50–60 MeV. We simulate gamma-ray yield over a wide range of Atmospheric Electric Field (AEF) to delineate MOS and RREA regimes and quantify spectral evolution with field strength. Experimental data from two Thunderstorm Ground Enhancements (TGEs) observed on 2 October 2024, are analyzed. By matching the exponential growth of measured count rates to modeled RREA yield, we derive the temporal evolution of the AEF during both TGEs, revealing the rate and magnitude of field strengthening that drive particle bursts and bridge the MOS–RREA transition in natural thunderstorms.","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"29 1","pages":""},"PeriodicalIF":5.2,"publicationDate":"2025-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145796282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Urban Basin Structure Imaging in Northern Los Angeles From Ambient Noise Differential Adjoint Tomography 基于环境噪声差分伴随层析成像的洛杉矶北部城市盆地结构成像
IF 5.2 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2025-12-19 DOI: 10.1029/2025gl117560
Zhanwen Li, Xin Liu, Xi Wang, Lina Gao
We employ differential adjoint tomography to suppress the effects of uneven noise sources and image the upper crust S wave velocity structure of San Gabriel Basin, Chino Basin and San Bernardino Basin in the northern Los Angeles. A Sequential Subdomain Inversion strategy is implemented to address regional imbalance of sensitivity kernel coverage and improve resolution in the region with suboptimal data coverage. Our results align well with known structures and reveal some undiscussed details in this region. Beyond delineating upper crustal structure, we analyzed the relationship between velocity anomalies and regional seismicity. Diffuse low-velocity anomalies detected at the Fontana Seismicity region provide evidence for fluid migration. The high-velocity channel within the San Jose Fault zone indicates that the fault acts as a water barrier. We also identified a concentrated low-velocity anomaly between 0.8 and 4 km depth beneath Puddingstone Reservoir, potentially indicating groundwater seepage.
利用差分伴随层析成像技术抑制非均匀噪声源的影响,对洛杉矶北部San Gabriel盆地、Chino盆地和San Bernardino盆地的上地壳S波速度结构进行了成像。为了解决灵敏度核覆盖的区域不平衡问题,提高数据覆盖次优区域的分辨率,采用了序列子域反演策略。我们的结果与已知的结构很好地吻合,并揭示了该地区一些未被讨论的细节。在圈定上地壳结构的基础上,分析了速度异常与区域地震活动性的关系。在丰塔纳地震活动区探测到的弥漫性低速异常为流体运移提供了证据。圣何塞断裂带内的高速通道表明该断层起到了水屏障的作用。在普丁斯通水库下方0.8 ~ 4 km深度处发现了一个集中的低速异常,可能是地下水渗漏的信号。
{"title":"Urban Basin Structure Imaging in Northern Los Angeles From Ambient Noise Differential Adjoint Tomography","authors":"Zhanwen Li, Xin Liu, Xi Wang, Lina Gao","doi":"10.1029/2025gl117560","DOIUrl":"https://doi.org/10.1029/2025gl117560","url":null,"abstract":"We employ differential adjoint tomography to suppress the effects of uneven noise sources and image the upper crust S wave velocity structure of San Gabriel Basin, Chino Basin and San Bernardino Basin in the northern Los Angeles. A Sequential Subdomain Inversion strategy is implemented to address regional imbalance of sensitivity kernel coverage and improve resolution in the region with suboptimal data coverage. Our results align well with known structures and reveal some undiscussed details in this region. Beyond delineating upper crustal structure, we analyzed the relationship between velocity anomalies and regional seismicity. Diffuse low-velocity anomalies detected at the Fontana Seismicity region provide evidence for fluid migration. The high-velocity channel within the San Jose Fault zone indicates that the fault acts as a water barrier. We also identified a concentrated low-velocity anomaly between 0.8 and 4 km depth beneath Puddingstone Reservoir, potentially indicating groundwater seepage.","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"56 1","pages":""},"PeriodicalIF":5.2,"publicationDate":"2025-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145777964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Beyond Oxygen Fugacity: A Compositional Metric to Probe Earth's Redox Structure 超越氧逸度:探测地球氧化还原结构的成分度量
IF 5.2 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2025-12-19 DOI: 10.1029/2025gl117642
Matthieu Emmanuel Galvez, Othmar Müntener, Samuel Laurent Jaccard
We quantify the redox capacity (dO2) by redox titration—defined as the quantity of oxygen required to fully oxidize a sample—for rocks spanning Earth's upper mantle to surface sediments. The values span three orders of magnitude, with the greatest variability in metamorphic and surface rocks that host both highly reduced (rich in carbon and sulfur) and oxidized materials. In contrast, exhumed lower-crustal and mantle rocks display more uniform values of dO2. This distribution reflects not a progressive net planetary oxidation, but active redox partitioning, shaped by far-from-equilibrium biological chemistry, surface processes, and tectonic cycling. Unlike thermodynamic potentials such as μO2, the compositional variable dO2 directly constrains the redox structure of Earth's shallow lithospheric reservoirs. This framework provides an experimentally grounded and physically intuitive metric for quantifying redox transfers and assessing their geophysical consequences.
我们通过氧化还原滴定法(定义为完全氧化样品所需的氧气量)量化了从地球上地幔到地表沉积物的岩石的氧化还原能力(dO2)。这些数值跨越了三个数量级,在变质岩和表面岩石中变化最大,这些岩石既含有高度还原的(富含碳和硫)物质,也含有氧化物质。相比之下,出土的下地壳和地幔岩石的dO2值更为均匀。这种分布反映的不是渐进的净行星氧化,而是由远离平衡的生物化学、地表过程和构造循环形成的活性氧化还原分配。与μO2等热力学势不同,组成变量dO2直接约束了地球浅层岩石圈储层的氧化还原结构。该框架为定量氧化还原转移和评估其地球物理后果提供了实验基础和物理直观的度量。
{"title":"Beyond Oxygen Fugacity: A Compositional Metric to Probe Earth's Redox Structure","authors":"Matthieu Emmanuel Galvez, Othmar Müntener, Samuel Laurent Jaccard","doi":"10.1029/2025gl117642","DOIUrl":"https://doi.org/10.1029/2025gl117642","url":null,"abstract":"We quantify the redox capacity (<i>d</i>O<sub>2</sub>) by redox titration—defined as the quantity of oxygen required to fully oxidize a sample—for rocks spanning Earth's upper mantle to surface sediments. The values span three orders of magnitude, with the greatest variability in metamorphic and surface rocks that host both highly reduced (rich in carbon and sulfur) and oxidized materials. In contrast, exhumed lower-crustal and mantle rocks display more uniform values of <i>d</i>O<sub>2</sub>. This distribution reflects not a progressive net planetary oxidation, but active redox <i>partitioning</i>, shaped by far-from-equilibrium biological chemistry, surface processes, and tectonic cycling. Unlike thermodynamic potentials such as <i>μ</i>O<sub>2</sub>, the compositional variable <i>d</i>O<sub>2</sub> directly constrains the redox structure of Earth's shallow lithospheric reservoirs. This framework provides an experimentally grounded and physically intuitive metric for quantifying redox transfers and assessing their geophysical consequences.","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"20 1","pages":""},"PeriodicalIF":5.2,"publicationDate":"2025-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145796281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Geophysical Research Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1