{"title":"Immune Phenotype-Genotype Associations in Primary Clear Cell Renal Cell Carcinoma and Matched Metastatic Tissue","authors":"","doi":"10.1016/j.modpat.2024.100558","DOIUrl":null,"url":null,"abstract":"<div><p>Adjuvant immunotherapy has been recently recommended for patients with metastatic clear cell renal cell carcinoma (ccRCC), but there are no tissue biomarkers to predict treatment response in ccRCC. Potential predictive biomarkers are mainly assessed in primary tumor tissue, whereas metastases (METs) remain understudied. To explore potential differences between genomic alterations and immune phenotypes in primary tumors and their matched METs, we analyzed primary tumors (PTs) of 47 ccRCC patients and their matched distant METs by comprehensive targeted parallel sequencing, whole-genome copy number variation analysis, determination of microsatellite instability, and tumor mutational burden. We quantified the spatial distribution of tumor-infiltrating CD8<sup>+</sup> T cells and coexpression of the T-cell-exhaustion marker thymocyte selection-associated high mobility group box (TOX) by digital immunoprofiling and quantified tertiary lymphoid structures. Most METs were pathologically “cold.” Inflamed, pathologically “hot” PTs were associated with decreased disease-free survival, worst for patients with high levels of CD8<sup>+</sup>TOX<sup>+</sup> T cells. Interestingly, inflamed METs showed a relative increase in exhausted CD8<sup>+</sup>TOX<sup>+</sup> T cells and increased accumulative size of tertiary lymphoid structures compared with PTs. Integrative analysis of molecular and immune phenotypes revealed <em>BAP1</em> and <em>CDKN2A/B</em> deficiency to be associated with an inflamed immune phenotype. Our results highlight the distinct spatial distribution and differentiation of CD8+ T cells at metastatic sites, and the association of an inflamed microenvironment with specific genomic alterations.</p></div>","PeriodicalId":18706,"journal":{"name":"Modern Pathology","volume":"37 10","pages":"Article 100558"},"PeriodicalIF":7.1000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0893395224001388/pdfft?md5=64710c524cf3d80798aa4ff621a2d88a&pid=1-s2.0-S0893395224001388-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Pathology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893395224001388","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Adjuvant immunotherapy has been recently recommended for patients with metastatic clear cell renal cell carcinoma (ccRCC), but there are no tissue biomarkers to predict treatment response in ccRCC. Potential predictive biomarkers are mainly assessed in primary tumor tissue, whereas metastases (METs) remain understudied. To explore potential differences between genomic alterations and immune phenotypes in primary tumors and their matched METs, we analyzed primary tumors (PTs) of 47 ccRCC patients and their matched distant METs by comprehensive targeted parallel sequencing, whole-genome copy number variation analysis, determination of microsatellite instability, and tumor mutational burden. We quantified the spatial distribution of tumor-infiltrating CD8+ T cells and coexpression of the T-cell-exhaustion marker thymocyte selection-associated high mobility group box (TOX) by digital immunoprofiling and quantified tertiary lymphoid structures. Most METs were pathologically “cold.” Inflamed, pathologically “hot” PTs were associated with decreased disease-free survival, worst for patients with high levels of CD8+TOX+ T cells. Interestingly, inflamed METs showed a relative increase in exhausted CD8+TOX+ T cells and increased accumulative size of tertiary lymphoid structures compared with PTs. Integrative analysis of molecular and immune phenotypes revealed BAP1 and CDKN2A/B deficiency to be associated with an inflamed immune phenotype. Our results highlight the distinct spatial distribution and differentiation of CD8+ T cells at metastatic sites, and the association of an inflamed microenvironment with specific genomic alterations.
期刊介绍:
Modern Pathology, an international journal under the ownership of The United States & Canadian Academy of Pathology (USCAP), serves as an authoritative platform for publishing top-tier clinical and translational research studies in pathology.
Original manuscripts are the primary focus of Modern Pathology, complemented by impactful editorials, reviews, and practice guidelines covering all facets of precision diagnostics in human pathology. The journal's scope includes advancements in molecular diagnostics and genomic classifications of diseases, breakthroughs in immune-oncology, computational science, applied bioinformatics, and digital pathology.