Population-scale variability of the human UDP-glycosyltransferase gene family.

IF 6.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Genetics and Genomics Pub Date : 2024-07-04 DOI:10.1016/j.jgg.2024.06.018
Daianna González-Padilla, Mahamadou D Camara, Volker M Lauschke, Yitian Zhou
{"title":"Population-scale variability of the human UDP-glycosyltransferase gene family.","authors":"Daianna González-Padilla, Mahamadou D Camara, Volker M Lauschke, Yitian Zhou","doi":"10.1016/j.jgg.2024.06.018","DOIUrl":null,"url":null,"abstract":"<p><p>Human UDP-glycosyltransferases (UGTs) are responsible for the glucuronidation of a wide variety of endogenous substrates and commonly prescribed drugs. Different genetic polymorphisms in UGT genes are implicated in interindividual differences in drug response and cancer risk. However, the genetic complexity beyond these variants has not been comprehensively assessed. We here leveraged whole-exome and whole-genome sequencing data from 141,456 unrelated individuals across 7 major human populations to provide a comprehensive profile of genetic variability across the human UGT gene family. Overall, 9666 exonic variants were observed of which 98.9% were rare. To interpret the functional impact of UGT missense variants, we developed a gene family-specific variant effect predictor. This algorithm identified a total of 1208 deleterious variants, most of which were found in African and South Asian populations. Structural analysis corroborated the predicted effects for multiple variations in substrate binding sites. Combined, our analyses provide a systematic overview of UGT variability, which can yield insights into interindividual differences in phase 2 metabolism and facilitate the translation of sequencing data into personalized predictions of UGT substrate disposition.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":null,"pages":null},"PeriodicalIF":6.6000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Genetics and Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jgg.2024.06.018","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Human UDP-glycosyltransferases (UGTs) are responsible for the glucuronidation of a wide variety of endogenous substrates and commonly prescribed drugs. Different genetic polymorphisms in UGT genes are implicated in interindividual differences in drug response and cancer risk. However, the genetic complexity beyond these variants has not been comprehensively assessed. We here leveraged whole-exome and whole-genome sequencing data from 141,456 unrelated individuals across 7 major human populations to provide a comprehensive profile of genetic variability across the human UGT gene family. Overall, 9666 exonic variants were observed of which 98.9% were rare. To interpret the functional impact of UGT missense variants, we developed a gene family-specific variant effect predictor. This algorithm identified a total of 1208 deleterious variants, most of which were found in African and South Asian populations. Structural analysis corroborated the predicted effects for multiple variations in substrate binding sites. Combined, our analyses provide a systematic overview of UGT variability, which can yield insights into interindividual differences in phase 2 metabolism and facilitate the translation of sequencing data into personalized predictions of UGT substrate disposition.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人类 UDP-糖基转移酶基因家族的种群规模变异。
人类 UDP-糖基转移酶(UGTs)负责多种内源性底物和多种常用处方药的葡萄糖醛酸化。UGT 基因的不同遗传多态性与药物反应和癌症风险的个体差异有关。然而,这些变异之外的遗传复杂性尚未得到全面评估。在这里,我们利用来自 7 个主要人类种群的 141,456 个无关个体的全外显子组和全基因组测序数据,提供了人类 UGT 基因家族遗传变异的全面概况。总共观察到 9666 个外显子变异,其中 98.9% 为罕见变异。为了解释 UGT 错义变异的功能影响,我们开发了一个基因家族特异性变异效应预测器。该算法共鉴定出1208个有害变异,其中大部分出现在非洲和南亚人群中。结构分析证实了底物结合位点多种变异的预测效应。综合来看,我们的分析提供了 UGT 变异的系统概述,可以深入了解个体间在第二阶段代谢中的差异,并促进将测序数据转化为 UGT 底物处置的个性化预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Genetics and Genomics
Journal of Genetics and Genomics 生物-生化与分子生物学
CiteScore
8.20
自引率
3.40%
发文量
4756
审稿时长
14 days
期刊介绍: The Journal of Genetics and Genomics (JGG, formerly known as Acta Genetica Sinica ) is an international journal publishing peer-reviewed articles of novel and significant discoveries in the fields of genetics and genomics. Topics of particular interest include but are not limited to molecular genetics, developmental genetics, cytogenetics, epigenetics, medical genetics, population and evolutionary genetics, genomics and functional genomics as well as bioinformatics and computational biology.
期刊最新文献
A-to-G/C/T and C-to-T/G/A dual-function base editor for creating multi-nucleotide variants. Improving precision base editing of the zebrafish genome by Rad51DBD-incorporated single-base editors. Genome-wide DNA methylation profile and predictive biomarkers in premature ovarian insufficiency. The interplay between histone modifications and nuclear lamina in genome regulation. bmp10 maintains cardiac function by regulating iron homeostasis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1