首页 > 最新文献

Journal of Genetics and Genomics最新文献

英文 中文
Resolving the spatial and cellular architecture of intra-tumor heterogeneity by multi-region dissection of lung adenocarcinoma.
IF 6.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-22 DOI: 10.1016/j.jgg.2025.02.006
Song Mei, Xiaolei Wang, Mengmeng Zhao, Qing Huang, Yixuan Huang, Mingming Su, Xinlei Zhang, Xu Wang, Xueyu Hao, Tianning Wang, Yanhua Wu, Yuanhui Ma, Jingnan Wang, Peng Zhang, Yan Zheng

Although the spatial characteristics within the tumor microenvironment (TME) of lung adenocarcinoma (LUAD) have been identified, the mechanisms by which these factors promote LUAD progression and immune evasion remain unclear. Using spatial transcriptomics (ST) and single-cell RNA-sequencing (scRNA-seq) data from multi-regional LUAD biopsies, consisting of tumor core, tumor edge and normal area, we sought to delineate the spatial heterogeneity and driving factors of cell co-localization. Two cancer cell sub-clusters (Cancer_c1 and Cancer_c2), associated with LUAD initiation and metastasis respectively, exhibit distinct spatial distributions and immune cell colocalizations. In particular, Cancer_c1, enriched within the tumor core, could directly interact with B cells or indirectly recruit B cells through macrophages. Conversely, Cancer_c2 enriched within the tumor edge exhibits co-localization with CD8+ T cells. Collectively, our work elucidates the spatial distribution of cancer cell subtypes and their interaction with immune cells in the core and edge of LUAD, providing insights for developing therapeutic strategies for cancer intervention.

{"title":"Resolving the spatial and cellular architecture of intra-tumor heterogeneity by multi-region dissection of lung adenocarcinoma.","authors":"Song Mei, Xiaolei Wang, Mengmeng Zhao, Qing Huang, Yixuan Huang, Mingming Su, Xinlei Zhang, Xu Wang, Xueyu Hao, Tianning Wang, Yanhua Wu, Yuanhui Ma, Jingnan Wang, Peng Zhang, Yan Zheng","doi":"10.1016/j.jgg.2025.02.006","DOIUrl":"https://doi.org/10.1016/j.jgg.2025.02.006","url":null,"abstract":"<p><p>Although the spatial characteristics within the tumor microenvironment (TME) of lung adenocarcinoma (LUAD) have been identified, the mechanisms by which these factors promote LUAD progression and immune evasion remain unclear. Using spatial transcriptomics (ST) and single-cell RNA-sequencing (scRNA-seq) data from multi-regional LUAD biopsies, consisting of tumor core, tumor edge and normal area, we sought to delineate the spatial heterogeneity and driving factors of cell co-localization. Two cancer cell sub-clusters (Cancer_c1 and Cancer_c2), associated with LUAD initiation and metastasis respectively, exhibit distinct spatial distributions and immune cell colocalizations. In particular, Cancer_c1, enriched within the tumor core, could directly interact with B cells or indirectly recruit B cells through macrophages. Conversely, Cancer_c2 enriched within the tumor edge exhibits co-localization with CD8<sup>+</sup> T cells. Collectively, our work elucidates the spatial distribution of cancer cell subtypes and their interaction with immune cells in the core and edge of LUAD, providing insights for developing therapeutic strategies for cancer intervention.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143494945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expression quantitative trait loci (eQTL): from population genetics to precision medicine.
IF 6.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-20 DOI: 10.1016/j.jgg.2025.02.003
Zhi Qi Wong, Lian Deng, Alvin Cengnata, Thuhairah Abdul Rahman, Aletza Ismail, Renee Lay Hong Lim, Shuhua Xu, Boon-Peng Hoh

Evidence has shown that differential transcriptomic profiles among human populations from diverse ancestries, supporting the role of genetic architecture in regulating gene expression alongside environmental stimuli. Genetic variants that regulate gene expression, known as expression quantitative trait loci (eQTL), are primarily shaped by human migration history and evolutionary forces, likewise, regulation of gene expression in principle could have been influenced by these events. Therefore, a comprehensive understanding of how human evolution impacts eQTL offers important insights into how phenotypic diversity is shaped. Recent studies, however, suggest that eQTL is enriched in genes that are selectively constrained. Whether eQTL is minimally affected by selective pressures remains an open question and requires comprehensive investigations. In addition, such studies are primarily dominated by the major populations of European ancestry, leaving many marginalized populations underrepresented. These observations indicate there exists a fundamental knowledge gap in the role of genomics variation on phenotypic diversity, which potentially hinders precision medicine. This article aims to revisit the abundance of eQTL across diverse populations and provide an overview of their impact from the population and evolutionary genetics perspective, subsequently discuss their influence on phenomics, as well as challenges and opportunities in the applications to precision medicine.

有证据表明,来自不同祖先的人类群体之间存在不同的转录组特征,这支持了遗传结构在调节基因表达和环境刺激方面的作用。调控基因表达的遗传变异(称为表达量性状位点(eQTL))主要由人类迁徙史和进化力量形成,同样,基因表达的调控原则上也可能受到这些事件的影响。因此,全面了解人类进化是如何影响 eQTL 的,将有助于深入了解表型多样性是如何形成的。然而,最近的研究表明,eQTL富集于受到选择性限制的基因中。eQTL 受选择性压力的影响是否最小仍是一个未决问题,需要进行全面调查。此外,此类研究主要以欧洲血统的主要人群为主,许多边缘化人群的代表性不足。这些观察结果表明,在基因组学变异对表型多样性的作用方面存在着根本性的知识空白,这可能会阻碍精准医学的发展。本文旨在重新审视eQTL在不同人群中的丰富程度,并从群体和进化遗传学的角度概述其影响,随后讨论其对表型组学的影响,以及在精准医疗应用中的挑战和机遇。
{"title":"Expression quantitative trait loci (eQTL): from population genetics to precision medicine.","authors":"Zhi Qi Wong, Lian Deng, Alvin Cengnata, Thuhairah Abdul Rahman, Aletza Ismail, Renee Lay Hong Lim, Shuhua Xu, Boon-Peng Hoh","doi":"10.1016/j.jgg.2025.02.003","DOIUrl":"https://doi.org/10.1016/j.jgg.2025.02.003","url":null,"abstract":"<p><p>Evidence has shown that differential transcriptomic profiles among human populations from diverse ancestries, supporting the role of genetic architecture in regulating gene expression alongside environmental stimuli. Genetic variants that regulate gene expression, known as expression quantitative trait loci (eQTL), are primarily shaped by human migration history and evolutionary forces, likewise, regulation of gene expression in principle could have been influenced by these events. Therefore, a comprehensive understanding of how human evolution impacts eQTL offers important insights into how phenotypic diversity is shaped. Recent studies, however, suggest that eQTL is enriched in genes that are selectively constrained. Whether eQTL is minimally affected by selective pressures remains an open question and requires comprehensive investigations. In addition, such studies are primarily dominated by the major populations of European ancestry, leaving many marginalized populations underrepresented. These observations indicate there exists a fundamental knowledge gap in the role of genomics variation on phenotypic diversity, which potentially hinders precision medicine. This article aims to revisit the abundance of eQTL across diverse populations and provide an overview of their impact from the population and evolutionary genetics perspective, subsequently discuss their influence on phenomics, as well as challenges and opportunities in the applications to precision medicine.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143476897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unlocking soybean potential: genetic resources and omics for breeding.
IF 6.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-19 DOI: 10.1016/j.jgg.2025.02.004
Zongbiao Duan, Liangwei Xu, Guoan Zhou, Zhou Zhu, Xudong Wang, Yanting Shen, Xin Ma, Zhixi Tian, Chao Fang

Soybean (Glycine max) is a vital foundation of global food security, providing a primary source of high-quality protein and oil for human consumption and animal feed. The rising global population has significantly increased the demand for soybeans, emphasizing the urgency of developing high-yield, stress-tolerant, and nutritionally superior cultivars. The extensive collection of soybean germplasm resources-including wild relatives, landraces, and cultivars-represents a valuable reservoir of genetic diversity critical for breeding advancements. Recent breakthroughs in genomic technologies, particularly high-throughput sequencing and multi-omics approaches, have revolutionized the identification of key genes associated with essential agronomic traits within these resources. These innovations enable precise and strategic utilization of genetic diversity, empowering breeders to integrate traits that improve yield potential, resilience to biotic and abiotic stresses, and nutritional quality. This review highlights the critical role of genetic resources and omics-driven innovations in soybean breeding. It also offers insights into strategies for accelerating the development of elite soybean cultivars to meet the growing demands of global soybean production.

{"title":"Unlocking soybean potential: genetic resources and omics for breeding.","authors":"Zongbiao Duan, Liangwei Xu, Guoan Zhou, Zhou Zhu, Xudong Wang, Yanting Shen, Xin Ma, Zhixi Tian, Chao Fang","doi":"10.1016/j.jgg.2025.02.004","DOIUrl":"https://doi.org/10.1016/j.jgg.2025.02.004","url":null,"abstract":"<p><p>Soybean (Glycine max) is a vital foundation of global food security, providing a primary source of high-quality protein and oil for human consumption and animal feed. The rising global population has significantly increased the demand for soybeans, emphasizing the urgency of developing high-yield, stress-tolerant, and nutritionally superior cultivars. The extensive collection of soybean germplasm resources-including wild relatives, landraces, and cultivars-represents a valuable reservoir of genetic diversity critical for breeding advancements. Recent breakthroughs in genomic technologies, particularly high-throughput sequencing and multi-omics approaches, have revolutionized the identification of key genes associated with essential agronomic traits within these resources. These innovations enable precise and strategic utilization of genetic diversity, empowering breeders to integrate traits that improve yield potential, resilience to biotic and abiotic stresses, and nutritional quality. This review highlights the critical role of genetic resources and omics-driven innovations in soybean breeding. It also offers insights into strategies for accelerating the development of elite soybean cultivars to meet the growing demands of global soybean production.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143473308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diverse functions of sex determination gene doublesex on sexually dimorphic neuronal development and behaviors.
IF 6.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-19 DOI: 10.1016/j.jgg.2025.02.005
Jiangtao Chen, Wen Tu, Ziqi Li, Mingze Ma, Simei Jiang, Wenyue Guan, Rong Wang, Yufeng Pan, Qionglin Peng

Sex-specific neurons play pivotal roles in regulating sexually dimorphic behaviors. In insects, the sex determination gene doublesex (dsx) establishes major sexual dimorphism of the nervous system, in which male-specific dsxM promotes neuronal development, while female-specific dsxF inhibits neuronal development by promoting neuronal apoptosis. In this study, we find that dsx regulates the number of dsx-expressing central neurons in Drosophila in cell-specific manners. Although dsxM overall promotes an increase in the number of dsx neurons, it inhibits the emergence of specific pC1 neurons. dsxF reduces the number of different pC1/pC2 subtypes, but promotes the formation of pC1d. We also find that dsxM and dsxF barely affect the number of some pC2 neurons. Changes in the number of pC1/pC2 neuron numbers alter their roles in regulating different behaviors, including courtship, aggression, and locomotion. Our results demonstrate the multifaceted functions of dsx in sexually dimorphic neuronal development and behaviors.

性别特异性神经元在调节性双态行为方面发挥着关键作用。在昆虫中,性别决定基因doublesex(dsx)决定了神经系统的主要性别二态性,其中雄性特异性dsxM促进神经元发育,而雌性特异性dsxF则通过促进神经元凋亡来抑制神经元发育。在这项研究中,我们发现dsx以细胞特异性的方式调节果蝇中dsx表达的中枢神经元的数量。虽然dsxM总体上促进了dsx神经元数量的增加,但它抑制了特定pC1神经元的出现。我们还发现,dsxM 和 dsxF 几乎不会影响某些 pC2 神经元的数量。pC1/pC2 神经元数量的变化会改变它们在调控求偶、攻击和运动等不同行为中的作用。我们的研究结果证明了dsx在性双态神经元发育和行为中的多方面功能。
{"title":"Diverse functions of sex determination gene doublesex on sexually dimorphic neuronal development and behaviors.","authors":"Jiangtao Chen, Wen Tu, Ziqi Li, Mingze Ma, Simei Jiang, Wenyue Guan, Rong Wang, Yufeng Pan, Qionglin Peng","doi":"10.1016/j.jgg.2025.02.005","DOIUrl":"https://doi.org/10.1016/j.jgg.2025.02.005","url":null,"abstract":"<p><p>Sex-specific neurons play pivotal roles in regulating sexually dimorphic behaviors. In insects, the sex determination gene doublesex (dsx) establishes major sexual dimorphism of the nervous system, in which male-specific dsx<sup>M</sup> promotes neuronal development, while female-specific dsx<sup>F</sup> inhibits neuronal development by promoting neuronal apoptosis. In this study, we find that dsx regulates the number of dsx-expressing central neurons in Drosophila in cell-specific manners. Although dsx<sup>M</sup> overall promotes an increase in the number of dsx neurons, it inhibits the emergence of specific pC1 neurons. dsx<sup>F</sup> reduces the number of different pC1/pC2 subtypes, but promotes the formation of pC1d. We also find that dsx<sup>M</sup> and dsx<sup>F</sup> barely affect the number of some pC2 neurons. Changes in the number of pC1/pC2 neuron numbers alter their roles in regulating different behaviors, including courtship, aggression, and locomotion. Our results demonstrate the multifaceted functions of dsx in sexually dimorphic neuronal development and behaviors.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143473303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A gain-of-function variant in RICTOR predisposes to human obesity.
IF 6.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-19 DOI: 10.1016/j.jgg.2025.02.002
Mengshan Ni, Yinmeng Zhu, Yufei Chen, Shaoqian Zhao, Aibo Gao, Jieli Lu, Weiqing Wang, Ruixin Liu, Weiqiong Gu, Jie Hong, Jiqiu Wang

mTORC1/2 play central roles as signaling hubs of cell growth and metabolism and are therapeutic targets for several diseases. However, the human genetic evidence linking mutations of mTORC1/2 to obesity remains elusive. Using whole-exome sequencing of 1,944 cases with severe obesity and 2,161 healthy lean controls, we identify a rare RICTOR p.I116V variant enriched in 9 unrelated cases. In Rictor null mouse embryonic fibroblasts, overexpression of the RICTOR p.I116V mutant increases phosphorylation of AKT, a canonical mTORC2 substrate, compared to wild-type RICTOR, indicating a gain-of-function change. Consistent with the human obesity phenotype, the knock-in mice carrying homogenous Rictor p.I116V variants gain more body weight under a high-fat diet. Additionally, the stromal vascular fraction cells derived from inguinal white adipose tissue of knock-in mice display an enhanced capacity for adipocyte differentiation via AKT activity. These findings illustrate that the rare gain-of-function RICTOR p.I116V mutation activates AKT signaling, promotes adipogenesis, and contributes to obesity in humans.

{"title":"A gain-of-function variant in RICTOR predisposes to human obesity.","authors":"Mengshan Ni, Yinmeng Zhu, Yufei Chen, Shaoqian Zhao, Aibo Gao, Jieli Lu, Weiqing Wang, Ruixin Liu, Weiqiong Gu, Jie Hong, Jiqiu Wang","doi":"10.1016/j.jgg.2025.02.002","DOIUrl":"https://doi.org/10.1016/j.jgg.2025.02.002","url":null,"abstract":"<p><p>mTORC1/2 play central roles as signaling hubs of cell growth and metabolism and are therapeutic targets for several diseases. However, the human genetic evidence linking mutations of mTORC1/2 to obesity remains elusive. Using whole-exome sequencing of 1,944 cases with severe obesity and 2,161 healthy lean controls, we identify a rare RICTOR p.I116V variant enriched in 9 unrelated cases. In Rictor null mouse embryonic fibroblasts, overexpression of the RICTOR p.I116V mutant increases phosphorylation of AKT, a canonical mTORC2 substrate, compared to wild-type RICTOR, indicating a gain-of-function change. Consistent with the human obesity phenotype, the knock-in mice carrying homogenous Rictor p.I116V variants gain more body weight under a high-fat diet. Additionally, the stromal vascular fraction cells derived from inguinal white adipose tissue of knock-in mice display an enhanced capacity for adipocyte differentiation via AKT activity. These findings illustrate that the rare gain-of-function RICTOR p.I116V mutation activates AKT signaling, promotes adipogenesis, and contributes to obesity in humans.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143473301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endogamy and high prevalence of deleterious mutations in India: evidence from strong founder events.
IF 6.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-13 DOI: 10.1016/j.jgg.2025.02.001
Pratheusa Machha, Amirtha Gopalan, Yamini Elangovan, Sarath Chandra Mouli Veeravalli, Divya Tej Sowpati, Kumarasamy Thangaraj

Founder events influence recessive diseases in highly endogamous populations. Several Indian populations have experienced significant founder events due to strict endogamy. However, the clinical implications of it remain underexplored. Therefore, we perform whole-exome sequencing of 281 individuals from four South Indian populations, characterized by high IBD scores. Our study reveals a high inbreeding rate of 59% across the populations. We identify ∼29.2% of the variants that are exclusively present in a single population and uncovered 1284 unreported exonic variants, underscoring the underrepresentation of Indian populations in global databases. Among these, 23 are predicted to be deleterious, all present in heterozygous state may be pathogenic when homozygous, an expected phenomenon in endogamous populations. Approximately 16%-33% of the identified pathogenic variants showed significantly higher occurrence rates compared to the South Asian populations from 1000 Genomes dataset. Pharmacogenomic analysis revealed distinct allele frequencies of variants in CYP450 and non-CYP450 genes, highlighting heterogeneous drug responses and associated risks. We report a high prevalence of ankylosing spondylitis in Reddy population, linked to HLA-B*27:04 allele and strong founder effect. Our findings highlight the need for extensive genomic research in understudied Indian populations for better understanding of disease risk and evolving strategies for precision and preventive medicine.

{"title":"Endogamy and high prevalence of deleterious mutations in India: evidence from strong founder events.","authors":"Pratheusa Machha, Amirtha Gopalan, Yamini Elangovan, Sarath Chandra Mouli Veeravalli, Divya Tej Sowpati, Kumarasamy Thangaraj","doi":"10.1016/j.jgg.2025.02.001","DOIUrl":"https://doi.org/10.1016/j.jgg.2025.02.001","url":null,"abstract":"<p><p>Founder events influence recessive diseases in highly endogamous populations. Several Indian populations have experienced significant founder events due to strict endogamy. However, the clinical implications of it remain underexplored. Therefore, we perform whole-exome sequencing of 281 individuals from four South Indian populations, characterized by high IBD scores. Our study reveals a high inbreeding rate of 59% across the populations. We identify ∼29.2% of the variants that are exclusively present in a single population and uncovered 1284 unreported exonic variants, underscoring the underrepresentation of Indian populations in global databases. Among these, 23 are predicted to be deleterious, all present in heterozygous state may be pathogenic when homozygous, an expected phenomenon in endogamous populations. Approximately 16%-33% of the identified pathogenic variants showed significantly higher occurrence rates compared to the South Asian populations from 1000 Genomes dataset. Pharmacogenomic analysis revealed distinct allele frequencies of variants in CYP450 and non-CYP450 genes, highlighting heterogeneous drug responses and associated risks. We report a high prevalence of ankylosing spondylitis in Reddy population, linked to HLA-B*27:04 allele and strong founder effect. Our findings highlight the need for extensive genomic research in understudied Indian populations for better understanding of disease risk and evolving strategies for precision and preventive medicine.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143426791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Varying Bifidobacterium species in the maternal-infant gut microbiota correlate with distinct early neurodevelopmental outcomes.
IF 6.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-07 DOI: 10.1016/j.jgg.2025.01.015
Cong Liu, Qun Lu, Qi Xi, Shuxin Xiao, Jiangbo Du, Rui Qin, Jinghan Wang, Bo Xu, Xiumei Han, Kun Zhou, Shiyao Tao, Hong Lv, Yangqian Jiang, Tao Jiang, Kan Ye, Guangfu Jin, Hongxia Ma, Yankai Xia, Hongbing Shen, Xingyin Liu, Yuan Lin, Zhibin Hu

The impact of mother-infant microbiota on neurodevelopment is an area of interest, but longitudinal studies are scarce. Using a cohort of 520 families from the Jiangsu birth cohort in China, we reveal that the maternal gut microbiota during early pregnancy play a substantial role, accounting for 3.34% of the variance in offspring neurodevelopmental scores. This contribution is notably higher than the 1.24% attributed to the infants' own microbiota at 1 year of age, underscoring the significant influence of maternal gut health on early child development. Remarkably, an elevation in maternal Bifidobacterium pseudocatenulatum is linked to decreased cognitive scores, whereas an enrichment of Bifidobacterium longum at 1 year of age is associated with higher cognitive scores. Furthermore, we find that maternal B. pseudocatenulatum is linked to heterolactic fermentation metabolic pathway, while infant B. longum is associated with the Bifidobacterium shunt pathway. In summary, our analysis implies that maternal and infant gut microbiota play a distinct role in neurodevelopment, suggesting potential strategies for improving neurodevelopmental outcomes during early pregnancy or infant development by targeting gut microbiota composition.

{"title":"Varying Bifidobacterium species in the maternal-infant gut microbiota correlate with distinct early neurodevelopmental outcomes.","authors":"Cong Liu, Qun Lu, Qi Xi, Shuxin Xiao, Jiangbo Du, Rui Qin, Jinghan Wang, Bo Xu, Xiumei Han, Kun Zhou, Shiyao Tao, Hong Lv, Yangqian Jiang, Tao Jiang, Kan Ye, Guangfu Jin, Hongxia Ma, Yankai Xia, Hongbing Shen, Xingyin Liu, Yuan Lin, Zhibin Hu","doi":"10.1016/j.jgg.2025.01.015","DOIUrl":"https://doi.org/10.1016/j.jgg.2025.01.015","url":null,"abstract":"<p><p>The impact of mother-infant microbiota on neurodevelopment is an area of interest, but longitudinal studies are scarce. Using a cohort of 520 families from the Jiangsu birth cohort in China, we reveal that the maternal gut microbiota during early pregnancy play a substantial role, accounting for 3.34% of the variance in offspring neurodevelopmental scores. This contribution is notably higher than the 1.24% attributed to the infants' own microbiota at 1 year of age, underscoring the significant influence of maternal gut health on early child development. Remarkably, an elevation in maternal Bifidobacterium pseudocatenulatum is linked to decreased cognitive scores, whereas an enrichment of Bifidobacterium longum at 1 year of age is associated with higher cognitive scores. Furthermore, we find that maternal B. pseudocatenulatum is linked to heterolactic fermentation metabolic pathway, while infant B. longum is associated with the Bifidobacterium shunt pathway. In summary, our analysis implies that maternal and infant gut microbiota play a distinct role in neurodevelopment, suggesting potential strategies for improving neurodevelopmental outcomes during early pregnancy or infant development by targeting gut microbiota composition.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143384136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decoding maize meristems maintenance and differentiation: integrating single-cell and spatial omics.
IF 6.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-05 DOI: 10.1016/j.jgg.2025.01.012
Bin Li, Wenhao Liu, Jie Xu, Xuxu Huang, Long Yang, Fang Xu

All plant organs are derived from stem cell-containing meristems. In maize, the shoot apical meristem (SAM) is responsible for generating all above-ground structures, including the male and female inflorescence meristems (IMs), which give rise to tassel and ear, respectively. Forward and reverse genetic studies on maize meristem mutants have driven forward our fundamental understanding of meristem maintenance and differentiation mechanisms. However, the high genetic redundancy of the maize genome has impeded progress in functional genomics. This review provides a comprehensive summary of the recent advancements in understanding maize meristem development, with a focus on the integration of single-cell and spatial technologies. We discuss the mechanisms governing stem cell maintenance and differentiation in SAM and IM, emphasizing the roles of gene regulatory networks, hormonal pathways, and cellular omics insights into stress responses and adaptation. Future directions include cross-species comparisons, multi-omics integration, and the application of these technologies to precision breeding and stress adaptation research, with the ultimate goal of translating our understanding of meristem into the development of higher yield varieties.

{"title":"Decoding maize meristems maintenance and differentiation: integrating single-cell and spatial omics.","authors":"Bin Li, Wenhao Liu, Jie Xu, Xuxu Huang, Long Yang, Fang Xu","doi":"10.1016/j.jgg.2025.01.012","DOIUrl":"10.1016/j.jgg.2025.01.012","url":null,"abstract":"<p><p>All plant organs are derived from stem cell-containing meristems. In maize, the shoot apical meristem (SAM) is responsible for generating all above-ground structures, including the male and female inflorescence meristems (IMs), which give rise to tassel and ear, respectively. Forward and reverse genetic studies on maize meristem mutants have driven forward our fundamental understanding of meristem maintenance and differentiation mechanisms. However, the high genetic redundancy of the maize genome has impeded progress in functional genomics. This review provides a comprehensive summary of the recent advancements in understanding maize meristem development, with a focus on the integration of single-cell and spatial technologies. We discuss the mechanisms governing stem cell maintenance and differentiation in SAM and IM, emphasizing the roles of gene regulatory networks, hormonal pathways, and cellular omics insights into stress responses and adaptation. Future directions include cross-species comparisons, multi-omics integration, and the application of these technologies to precision breeding and stress adaptation research, with the ultimate goal of translating our understanding of meristem into the development of higher yield varieties.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143375004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PAMPHLET: PAM Prediction HomoLogous-Enhancement Toolkit for precise PAM prediction in CRISPR-Cas systems. PAMPHLET:PAM 预测同源逻辑增强工具包,用于在 CRISPR-Cas 系统中精确预测 PAM。
IF 6.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-01 Epub Date: 2024-11-08 DOI: 10.1016/j.jgg.2024.10.014
Chen Qi, Xuechun Shen, Baitao Li, Chuan Liu, Lei Huang, Hongxia Lan, Donglong Chen, Yuan Jiang, Dan Wang

CRISPR-Cas technology has revolutionized our ability to understand and engineer organisms, evolving from a singular Cas9 model to a diverse CRISPR toolbox. A critical bottleneck in developing new Cas proteins is identifying protospacer adjacent motif (PAM) sequences. Due to the limitations of experimental methods, bioinformatics approaches have become essential. However, existing PAM prediction programs are limited by the small number of spacers in CRISPR-Cas systems, resulting in low accuracy. To address this, we develop PAMPHLET, a pipeline that uses homology searches to identify additional spacers, significantly increasing the number of spacers up to 18-fold. PAMPHLET is validated on 20 CRISPR-Cas systems and successfully predicts PAM sequences for 18 protospacers. These predictions are further validated using the DocMF platform, which characterizes protein-DNA recognition patterns via next-generation sequencing. The high consistency between PAMPHLET predictions and DocMF results for Cas proteins demonstrates the potential of PAMPHLET to enhance PAM sequence prediction accuracy, expedite the discovery process, and accelerate the development of CRISPR tools.

CRISPR-Cas技术彻底改变了我们理解和改造生物的能力,从单一的Cas9模型发展到多样化的CRISPR工具箱。开发新 Cas 蛋白的一个关键瓶颈是识别原间隔相邻基序(PAM)。由于实验方法的局限性,生物信息学方法变得至关重要。然而,现有的 PAM 预测程序受限于 CRISPR-Cas 系统中较少的间隔序列,导致准确率较低。为了解决这个问题,我们开发了 PAMPHLET,这是一种新型管道,它使用同源性搜索来识别额外的间隔物,大大增加了间隔物的数量,最多可增加 18 倍。PAMPHLET 在 20 个 CRISPR-Cas 系统上进行了验证,并成功预测了 18 个原间隔物的 PAM 序列。这些预测通过 DocMF 平台得到进一步验证,该平台通过下一代测序鉴定蛋白质-DNA 识别模式。PAMPHLET 预测结果与 DocMF 对新型 Cas 蛋白的预测结果高度一致,这表明 PAMPHLET 有潜力提高 PAM 序列预测的准确性、加快发现过程并加速 CRISPR 工具的开发。
{"title":"PAMPHLET: PAM Prediction HomoLogous-Enhancement Toolkit for precise PAM prediction in CRISPR-Cas systems.","authors":"Chen Qi, Xuechun Shen, Baitao Li, Chuan Liu, Lei Huang, Hongxia Lan, Donglong Chen, Yuan Jiang, Dan Wang","doi":"10.1016/j.jgg.2024.10.014","DOIUrl":"10.1016/j.jgg.2024.10.014","url":null,"abstract":"<p><p>CRISPR-Cas technology has revolutionized our ability to understand and engineer organisms, evolving from a singular Cas9 model to a diverse CRISPR toolbox. A critical bottleneck in developing new Cas proteins is identifying protospacer adjacent motif (PAM) sequences. Due to the limitations of experimental methods, bioinformatics approaches have become essential. However, existing PAM prediction programs are limited by the small number of spacers in CRISPR-Cas systems, resulting in low accuracy. To address this, we develop PAMPHLET, a pipeline that uses homology searches to identify additional spacers, significantly increasing the number of spacers up to 18-fold. PAMPHLET is validated on 20 CRISPR-Cas systems and successfully predicts PAM sequences for 18 protospacers. These predictions are further validated using the DocMF platform, which characterizes protein-DNA recognition patterns via next-generation sequencing. The high consistency between PAMPHLET predictions and DocMF results for Cas proteins demonstrates the potential of PAMPHLET to enhance PAM sequence prediction accuracy, expedite the discovery process, and accelerate the development of CRISPR tools.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":"258-268"},"PeriodicalIF":6.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142632876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved chromosome-level donkey (Equus asinus) genome provides insights into genome and chromosome evolution. 染色体级驴基因组的改进为了解基因组和染色体的进化提供了线索。
IF 6.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-01 Epub Date: 2024-11-13 DOI: 10.1016/j.jgg.2024.11.002
Ge Yang, Mian Gong, Qi-Meng Yang, Yi-Dan Li, Halima Jafari, Chu-Zhao Lei, Yu Jiang, Rui-Hua Dang
{"title":"Improved chromosome-level donkey (Equus asinus) genome provides insights into genome and chromosome evolution.","authors":"Ge Yang, Mian Gong, Qi-Meng Yang, Yi-Dan Li, Halima Jafari, Chu-Zhao Lei, Yu Jiang, Rui-Hua Dang","doi":"10.1016/j.jgg.2024.11.002","DOIUrl":"10.1016/j.jgg.2024.11.002","url":null,"abstract":"","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":"269-272"},"PeriodicalIF":6.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142632869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Genetics and Genomics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1