deforce: Derivative-free algorithms for optimizing Cascade Forward Neural Networks

IF 1.3 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Software Impacts Pub Date : 2024-06-25 DOI:10.1016/j.simpa.2024.100675
Nguyen Van Thieu , Hoang Nguyen , Harish Garg , Gia Sirbiladze
{"title":"deforce: Derivative-free algorithms for optimizing Cascade Forward Neural Networks","authors":"Nguyen Van Thieu ,&nbsp;Hoang Nguyen ,&nbsp;Harish Garg ,&nbsp;Gia Sirbiladze","doi":"10.1016/j.simpa.2024.100675","DOIUrl":null,"url":null,"abstract":"<div><p>This paper aims to introduce the ‘deforce’ framework, an open-source Python library constituted on top of Numpy, Scikit-Learn, PyTorch, and Mealpy. This framework provides hybrid models that combine derivative-free techniques with Cascade Forward Neural Networks (CFNNs). By inheriting from scikit-learn’s estimator, deforce’s models ensure easy integration into existing machine learning pipelines. It also has many advantages, including a simple installation process, a user-friendly interface, and adaptability to various user requirements. For researchers and practitioners looking to improve CFNN performance with minimal implementation effort, deforce offers a useful and approachable option.</p></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"21 ","pages":"Article 100675"},"PeriodicalIF":1.3000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665963824000630/pdfft?md5=65a0ecd3b6d6b97c16b43bca024a7fcc&pid=1-s2.0-S2665963824000630-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Impacts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665963824000630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

This paper aims to introduce the ‘deforce’ framework, an open-source Python library constituted on top of Numpy, Scikit-Learn, PyTorch, and Mealpy. This framework provides hybrid models that combine derivative-free techniques with Cascade Forward Neural Networks (CFNNs). By inheriting from scikit-learn’s estimator, deforce’s models ensure easy integration into existing machine learning pipelines. It also has many advantages, including a simple installation process, a user-friendly interface, and adaptability to various user requirements. For researchers and practitioners looking to improve CFNN performance with minimal implementation effort, deforce offers a useful and approachable option.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
deforce:优化级联前向神经网络的无衍生算法
本文旨在介绍 "deforce "框架,它是一个基于 Numpy、Scikit-Learn、PyTorch 和 Mealpy 的开源 Python 库。该框架提供了无衍生技术与级联前向神经网络(CFNN)相结合的混合模型。通过继承 scikit-learn 的估计器,deforce 的模型可以确保轻松集成到现有的机器学习管道中。它还有很多优点,包括安装过程简单、用户界面友好以及可适应各种用户需求。对于希望以最小的实施工作量提高 CFNN 性能的研究人员和从业人员来说,deforce 提供了一个实用、易用的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Software Impacts
Software Impacts Software
CiteScore
2.70
自引率
9.50%
发文量
0
审稿时长
16 days
期刊最新文献
mGFD: CloudGenerator SlabCutOpt: A code for ornamental stone slab cut optimization LandSin: A differential ML and google API-enabled web server for real-time land insights and beyond EnhancedBERT: A python software tailored for arabic word sense disambiguation PostgreSQL: Relational database structures application on capacitated lot-sizing for pharmaceutical tablets manufacturing processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1