Breaking the trade-off of permeability-selectivity: Strain-assisted T-C3N2 membranes for high-efficient helium separation and purification from gas mixture

IF 8.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL Journal of Membrane Science Pub Date : 2024-07-02 DOI:10.1016/j.memsci.2024.123051
Qihua Hou , Wentao Guo , Zhiyong Liu , Yongliang Yong , Xiaobo Yuan , Hongling Cui , Xinli Li , Xiaohong Li
{"title":"Breaking the trade-off of permeability-selectivity: Strain-assisted T-C3N2 membranes for high-efficient helium separation and purification from gas mixture","authors":"Qihua Hou ,&nbsp;Wentao Guo ,&nbsp;Zhiyong Liu ,&nbsp;Yongliang Yong ,&nbsp;Xiaobo Yuan ,&nbsp;Hongling Cui ,&nbsp;Xinli Li ,&nbsp;Xiaohong Li","doi":"10.1016/j.memsci.2024.123051","DOIUrl":null,"url":null,"abstract":"<div><p>Developing efficient membranes for He separation and purification is a key application-oriented technology for future innovative engineering. The He separation performance of the T-C<sub>3</sub>N<sub>2</sub> monolayer from gas mixture (He, Ne, Ar, CO, N<sub>2</sub>, CO<sub>2</sub>, H<sub>2</sub>O, and CH<sub>4</sub>) was systematically investigated by a combination of MD simulations and DFT calculations. It is found that the pure T-C<sub>3</sub>N<sub>2</sub> monolayer exhibits high He permeability but poor selectivity for He/Ne and He/CO<sub>2</sub>, which motivates us to introduce biaxial compressive strain in the T-C<sub>3</sub>N<sub>2</sub> to improve the He separation performance. Under the biaxial compressive strain of 5 % at 300 K, the T-C<sub>3</sub>N<sub>2</sub> membrane has high He permeability of 1.46 × 10<sup>7</sup> GPU) without other gases escaping from the membrane. However, with temperatures over 400 K, some Ne still migrate outside, which significantly hinder the high selectivity of He. Attractively, the membrane with 5.5 % strain engineering could improve He separation capability at 300 K with permeability of 1.53 × 10<sup>7</sup> GPU and further enhance selectivity of He over other gases, such as He/Ne (5.2 × 10<sup>5</sup>), He/Ar (3.2 × 10<sup>37</sup>), He/CO (1.7 × 10<sup>19</sup>), He/N<sub>2</sub> (2.5 × 10<sup>22</sup>), He/CO<sub>2</sub> (1.5 × 10<sup>9</sup>), He/H<sub>2</sub>O (3.1 × 10<sup>32</sup>), and He/CH<sub>4</sub> (10<sup>60</sup>), which are far beyond other 2D helium separation membranes. These results indicate that the strain-assisted T-C<sub>3</sub>N<sub>2</sub> membrane can synchronously own high permeability and selectivity for He separation, which means that the trade-off of permeability-selectivity of the T-C<sub>3</sub>N<sub>2</sub> membrane may be broken via the strain engineering. Our results reveal that the strain engineering can remarkably manage the helium separation performance of the T-C<sub>3</sub>N<sub>2</sub> membrane, and provide a promising strategy for designing and screening industrial He separation membranes at room temperature.</p></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":null,"pages":null},"PeriodicalIF":8.4000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738824006458","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Developing efficient membranes for He separation and purification is a key application-oriented technology for future innovative engineering. The He separation performance of the T-C3N2 monolayer from gas mixture (He, Ne, Ar, CO, N2, CO2, H2O, and CH4) was systematically investigated by a combination of MD simulations and DFT calculations. It is found that the pure T-C3N2 monolayer exhibits high He permeability but poor selectivity for He/Ne and He/CO2, which motivates us to introduce biaxial compressive strain in the T-C3N2 to improve the He separation performance. Under the biaxial compressive strain of 5 % at 300 K, the T-C3N2 membrane has high He permeability of 1.46 × 107 GPU) without other gases escaping from the membrane. However, with temperatures over 400 K, some Ne still migrate outside, which significantly hinder the high selectivity of He. Attractively, the membrane with 5.5 % strain engineering could improve He separation capability at 300 K with permeability of 1.53 × 107 GPU and further enhance selectivity of He over other gases, such as He/Ne (5.2 × 105), He/Ar (3.2 × 1037), He/CO (1.7 × 1019), He/N2 (2.5 × 1022), He/CO2 (1.5 × 109), He/H2O (3.1 × 1032), and He/CH4 (1060), which are far beyond other 2D helium separation membranes. These results indicate that the strain-assisted T-C3N2 membrane can synchronously own high permeability and selectivity for He separation, which means that the trade-off of permeability-selectivity of the T-C3N2 membrane may be broken via the strain engineering. Our results reveal that the strain engineering can remarkably manage the helium separation performance of the T-C3N2 membrane, and provide a promising strategy for designing and screening industrial He separation membranes at room temperature.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
打破渗透性-选择性的权衡:用于从混合气体中高效分离和提纯氦气的应变辅助 T-C3N2 膜
开发用于 He 分离和净化的高效膜是未来创新工程的一项关键应用技术。通过 MD 模拟和 DFT 计算相结合的方法,系统地研究了 T-C3N2 单层膜从混合气体(He、Ne、Ar、CO、N2、CO2、H2O 和 CH4)中分离 He 的性能。研究发现,纯 T-C3N2 单层具有较高的 He 渗透率,但对 He/Ne 和 He/CO2 的选择性较差,这促使我们在 T-C3N2 中引入双轴压缩应变来改善 He 分离性能。在 300 K 的温度下,T-C3N2 膜的双轴压缩应变为 5%,在没有其他气体从膜中逸出的情况下,其 He 渗透率高达 1.46 × 107 GPU。然而,当温度超过 400 K 时,仍会有一些 Ne 向外迁移,这大大阻碍了 He 的高选择性。具有吸引力的是,采用 5.5 % 应变工程的膜可以提高 He 在 300 K 温度下的分离能力,渗透率达到 1.53 × 107 GPU,并进一步提高 He 对其他气体的选择性,如 He/Ne (5.2 × 105)、He/Ar(3.2 × 1037)、He/CO(1.7 × 1019)、He/N2(2.5 × 1022)、He/CO2(1.5 × 109)、He/H2O(3.1 × 1032)和He/CH4(1060)等,远远超过其他二维氦分离膜。这些结果表明,应变辅助 T-C3N2 膜可以同步拥有高渗透性和 He 分离选择性,这意味着 T-C3N2 膜的渗透性-选择性权衡可以通过应变工程来打破。我们的研究结果表明,应变工程可以显著控制 T-C3N2 膜的氦分离性能,为设计和筛选室温下的工业氦分离膜提供了一种可行的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Membrane Science
Journal of Membrane Science 工程技术-高分子科学
CiteScore
17.10
自引率
17.90%
发文量
1031
审稿时长
2.5 months
期刊介绍: The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.
期刊最新文献
Electrochemical degradation of small molecule dyes by TiO2-decorated polyacrylonitrile nanofiber membranes with superior properties High-performance polybenzimidazole composite membranes doped with nitrogen-rich porous nanosheets for high-temperature fuel cells An electrospun iron oxychloride/polyacrylonitrile nanofibrous membrane with superhydrophilic and excellent regeneration properties: Achieving superior oil-in-water emulsion separation Enhanced osmotic power generation through anodic electrodeposited MOFs@MXene heterostructured nanochannels Preparation and application of highly oriented MFI zeolite membranes for efficient pervaporation recovery of organic solvents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1