Tailoring the injection action of oxygen over top-surface of bismuth sulfide to change reactive electron transfer path for flexible NO2 sensors

IF 31.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Science and Engineering: R: Reports Pub Date : 2024-07-04 DOI:10.1016/j.mser.2024.100819
Xiaowu Wang , Yang Chen , Zhigang Zeng , Muyu Yan , Xin Jia , Pengfei Hu , Jing Xu , Zhenggang Xue , Jiaqiang Xu
{"title":"Tailoring the injection action of oxygen over top-surface of bismuth sulfide to change reactive electron transfer path for flexible NO2 sensors","authors":"Xiaowu Wang ,&nbsp;Yang Chen ,&nbsp;Zhigang Zeng ,&nbsp;Muyu Yan ,&nbsp;Xin Jia ,&nbsp;Pengfei Hu ,&nbsp;Jing Xu ,&nbsp;Zhenggang Xue ,&nbsp;Jiaqiang Xu","doi":"10.1016/j.mser.2024.100819","DOIUrl":null,"url":null,"abstract":"<div><p>Precisely tailoring the surface electronic state of catalysts to realize the optimal design of adsorption sites is essential to the surface-related gas-sensing reaction. Herein, based on both molecular orbital theory and p-band models, we develop a brilliant surface oxygen-injected method to simultaneously enhance the overlap of energy-level alignment (ELA) and reduce the anti-bonding filling (ABF) level between surface Bi p-band and adsorbed NO<sub>2</sub> molecule, leading to an optimal NO<sub>2</sub> adsorption mode and sensing performance. By controlling the oxygen permeation concentrations, the weak-oxidized Bi<sub>2</sub>S<sub>3</sub>-200 catalysts with ordered core/disordered shell configuration exhibit excellent NO<sub>2</sub> gas sensitivity (12.5 % to 1 ppm) and low experimental detection limit (100 ppb), surpassing that of most reported NO<sub>2</sub> sensors. Ex situ XPS characterizations further demonstrate that the weak-oxidized amorphous Bi species can serve as active adsorption centers to alter the electron transfer path in NO<sub>2</sub> atmosphere. Finally, through inserting flexible MEMS sensors array into multifunctional wireless sensing device, the Bi<sub>2</sub>S<sub>3</sub>-200 sensors can realize real-time NO<sub>2</sub>/temperature/humidity monitoring and cloud data transmission at room temperature, which thereby pave the way for the development of crop health monitor and precision agriculture.</p></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"160 ","pages":"Article 100819"},"PeriodicalIF":31.6000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: R: Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927796X24000494","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Precisely tailoring the surface electronic state of catalysts to realize the optimal design of adsorption sites is essential to the surface-related gas-sensing reaction. Herein, based on both molecular orbital theory and p-band models, we develop a brilliant surface oxygen-injected method to simultaneously enhance the overlap of energy-level alignment (ELA) and reduce the anti-bonding filling (ABF) level between surface Bi p-band and adsorbed NO2 molecule, leading to an optimal NO2 adsorption mode and sensing performance. By controlling the oxygen permeation concentrations, the weak-oxidized Bi2S3-200 catalysts with ordered core/disordered shell configuration exhibit excellent NO2 gas sensitivity (12.5 % to 1 ppm) and low experimental detection limit (100 ppb), surpassing that of most reported NO2 sensors. Ex situ XPS characterizations further demonstrate that the weak-oxidized amorphous Bi species can serve as active adsorption centers to alter the electron transfer path in NO2 atmosphere. Finally, through inserting flexible MEMS sensors array into multifunctional wireless sensing device, the Bi2S3-200 sensors can realize real-time NO2/temperature/humidity monitoring and cloud data transmission at room temperature, which thereby pave the way for the development of crop health monitor and precision agriculture.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
调整氧气在硫化铋顶面的注入作用,改变活性电子传递路径,制造柔性二氧化氮传感器
精确调整催化剂的表面电子状态,实现吸附位点的优化设计,对于表面相关的气体传感反应至关重要。在此,我们基于分子轨道理论和 p 带模型,开发了一种出色的表面注氧方法,可同时增强能级排列重叠(ELA)和降低表面 Bi p 带与吸附的 NO2 分子之间的反键填充(ABF)水平,从而获得最佳的 NO2 吸附模式和传感性能。通过控制氧气渗透浓度,具有有序核/无序壳构型的弱氧化 Bi2S3-200 催化剂表现出卓越的二氧化氮气体灵敏度(12.5% 至 1 ppm)和较低的实验检测限(100 ppb),超过了大多数已报道的二氧化氮传感器。原位 XPS 表征进一步证明,弱氧化的无定形铋物种可作为活性吸附中心,改变二氧化氮环境中的电子传递路径。最后,通过将柔性 MEMS 传感器阵列插入多功能无线传感装置,Bi2S3-200 传感器可在室温下实现 NO2/温度/湿度的实时监测和云数据传输,从而为作物健康监测和精准农业的发展铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Science and Engineering: R: Reports
Materials Science and Engineering: R: Reports 工程技术-材料科学:综合
CiteScore
60.50
自引率
0.30%
发文量
19
审稿时长
34 days
期刊介绍: Materials Science & Engineering R: Reports is a journal that covers a wide range of topics in the field of materials science and engineering. It publishes both experimental and theoretical research papers, providing background information and critical assessments on various topics. The journal aims to publish high-quality and novel research papers and reviews. The subject areas covered by the journal include Materials Science (General), Electronic Materials, Optical Materials, and Magnetic Materials. In addition to regular issues, the journal also publishes special issues on key themes in the field of materials science, including Energy Materials, Materials for Health, Materials Discovery, Innovation for High Value Manufacturing, and Sustainable Materials development.
期刊最新文献
Biocompatible piezoelectric lattice materials with ultrasound-regulated multimodal responses High-speed, self-powered 2D-perovskite photodetectors with exceptional ambient stability enabled by planar nanocavity engineering Flexomagnetism: Progress, challenges, and opportunities Machine learning-enhanced photocatalysis for environmental sustainability: Integration and applications Advanced porous MOF materials and technologies for high-efficiency ppm-level toxic gas separation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1