Xiaowu Wang , Yang Chen , Zhigang Zeng , Muyu Yan , Xin Jia , Pengfei Hu , Jing Xu , Zhenggang Xue , Jiaqiang Xu
{"title":"Tailoring the injection action of oxygen over top-surface of bismuth sulfide to change reactive electron transfer path for flexible NO2 sensors","authors":"Xiaowu Wang , Yang Chen , Zhigang Zeng , Muyu Yan , Xin Jia , Pengfei Hu , Jing Xu , Zhenggang Xue , Jiaqiang Xu","doi":"10.1016/j.mser.2024.100819","DOIUrl":null,"url":null,"abstract":"<div><p>Precisely tailoring the surface electronic state of catalysts to realize the optimal design of adsorption sites is essential to the surface-related gas-sensing reaction. Herein, based on both molecular orbital theory and p-band models, we develop a brilliant surface oxygen-injected method to simultaneously enhance the overlap of energy-level alignment (ELA) and reduce the anti-bonding filling (ABF) level between surface Bi p-band and adsorbed NO<sub>2</sub> molecule, leading to an optimal NO<sub>2</sub> adsorption mode and sensing performance. By controlling the oxygen permeation concentrations, the weak-oxidized Bi<sub>2</sub>S<sub>3</sub>-200 catalysts with ordered core/disordered shell configuration exhibit excellent NO<sub>2</sub> gas sensitivity (12.5 % to 1 ppm) and low experimental detection limit (100 ppb), surpassing that of most reported NO<sub>2</sub> sensors. Ex situ XPS characterizations further demonstrate that the weak-oxidized amorphous Bi species can serve as active adsorption centers to alter the electron transfer path in NO<sub>2</sub> atmosphere. Finally, through inserting flexible MEMS sensors array into multifunctional wireless sensing device, the Bi<sub>2</sub>S<sub>3</sub>-200 sensors can realize real-time NO<sub>2</sub>/temperature/humidity monitoring and cloud data transmission at room temperature, which thereby pave the way for the development of crop health monitor and precision agriculture.</p></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"160 ","pages":"Article 100819"},"PeriodicalIF":31.6000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: R: Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927796X24000494","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Precisely tailoring the surface electronic state of catalysts to realize the optimal design of adsorption sites is essential to the surface-related gas-sensing reaction. Herein, based on both molecular orbital theory and p-band models, we develop a brilliant surface oxygen-injected method to simultaneously enhance the overlap of energy-level alignment (ELA) and reduce the anti-bonding filling (ABF) level between surface Bi p-band and adsorbed NO2 molecule, leading to an optimal NO2 adsorption mode and sensing performance. By controlling the oxygen permeation concentrations, the weak-oxidized Bi2S3-200 catalysts with ordered core/disordered shell configuration exhibit excellent NO2 gas sensitivity (12.5 % to 1 ppm) and low experimental detection limit (100 ppb), surpassing that of most reported NO2 sensors. Ex situ XPS characterizations further demonstrate that the weak-oxidized amorphous Bi species can serve as active adsorption centers to alter the electron transfer path in NO2 atmosphere. Finally, through inserting flexible MEMS sensors array into multifunctional wireless sensing device, the Bi2S3-200 sensors can realize real-time NO2/temperature/humidity monitoring and cloud data transmission at room temperature, which thereby pave the way for the development of crop health monitor and precision agriculture.
期刊介绍:
Materials Science & Engineering R: Reports is a journal that covers a wide range of topics in the field of materials science and engineering. It publishes both experimental and theoretical research papers, providing background information and critical assessments on various topics. The journal aims to publish high-quality and novel research papers and reviews.
The subject areas covered by the journal include Materials Science (General), Electronic Materials, Optical Materials, and Magnetic Materials. In addition to regular issues, the journal also publishes special issues on key themes in the field of materials science, including Energy Materials, Materials for Health, Materials Discovery, Innovation for High Value Manufacturing, and Sustainable Materials development.