Domain-specific languages for the automated generation of datasets for industry 4.0 applications

IF 10.4 1区 计算机科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Industrial Information Integration Pub Date : 2024-06-25 DOI:10.1016/j.jii.2024.100657
Brian Sal, Diego García-Saiz, Alfonso de la Vega, Pablo Sánchez
{"title":"Domain-specific languages for the automated generation of datasets for industry 4.0 applications","authors":"Brian Sal,&nbsp;Diego García-Saiz,&nbsp;Alfonso de la Vega,&nbsp;Pablo Sánchez","doi":"10.1016/j.jii.2024.100657","DOIUrl":null,"url":null,"abstract":"<div><p>Data collected in Industry 4.0 applications must be converted into tabular datasets before they can be processed by analysis algorithms, as in any data analysis system. To perform this transformation, data scientists have to write complex and long scripts, which can be a cumbersome process. To overcome this limitation, a language called Lavoisier was recently created to facilitate the creation of datasets. This language provides high-level primitives to select data from an object-oriented data model describing data available in a context. However, industrial engineers might not be used to deal with this kind of model. So, this work introduces a new set of languages that adapt Lavoisier to work with fishbone diagrams, which might be more suitable in industrial settings. These new languages keep the benefits of Lavoisier, reducing dataset creation complexity by 40% and up to 80%, and outperforming Lavoisier in some cases.</p></div>","PeriodicalId":55975,"journal":{"name":"Journal of Industrial Information Integration","volume":"41 ","pages":"Article 100657"},"PeriodicalIF":10.4000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452414X24001018/pdfft?md5=d889d7ec504c180c01cd190b069820dc&pid=1-s2.0-S2452414X24001018-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Information Integration","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452414X24001018","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Data collected in Industry 4.0 applications must be converted into tabular datasets before they can be processed by analysis algorithms, as in any data analysis system. To perform this transformation, data scientists have to write complex and long scripts, which can be a cumbersome process. To overcome this limitation, a language called Lavoisier was recently created to facilitate the creation of datasets. This language provides high-level primitives to select data from an object-oriented data model describing data available in a context. However, industrial engineers might not be used to deal with this kind of model. So, this work introduces a new set of languages that adapt Lavoisier to work with fishbone diagrams, which might be more suitable in industrial settings. These new languages keep the benefits of Lavoisier, reducing dataset creation complexity by 40% and up to 80%, and outperforming Lavoisier in some cases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为工业 4.0 应用自动生成数据集的特定领域语言
与任何数据分析系统一样,在工业 4.0 应用程序中收集的数据必须转换为表格数据集,然后才能通过分析算法进行处理。要进行这种转换,数据科学家必须编写复杂而冗长的脚本,这可能是一个繁琐的过程。为了克服这一限制,最近创建了一种名为 "拉瓦锡"(Lavoisier)的语言,以方便数据集的创建。这种语言提供了从描述上下文中可用数据的面向对象数据模型中选择数据的高级原语。然而,工业工程师可能不习惯处理这种模型。因此,这项工作引入了一套新的语言,将拉瓦锡语言调整为鱼骨图语言,这可能更适合工业环境。这些新语言保留了 Lavoisier 的优点,将数据集创建的复杂性降低了 40%,最高达 80%,在某些情况下甚至优于 Lavoisier。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Industrial Information Integration
Journal of Industrial Information Integration Decision Sciences-Information Systems and Management
CiteScore
22.30
自引率
13.40%
发文量
100
期刊介绍: The Journal of Industrial Information Integration focuses on the industry's transition towards industrial integration and informatization, covering not only hardware and software but also information integration. It serves as a platform for promoting advances in industrial information integration, addressing challenges, issues, and solutions in an interdisciplinary forum for researchers, practitioners, and policy makers. The Journal of Industrial Information Integration welcomes papers on foundational, technical, and practical aspects of industrial information integration, emphasizing the complex and cross-disciplinary topics that arise in industrial integration. Techniques from mathematical science, computer science, computer engineering, electrical and electronic engineering, manufacturing engineering, and engineering management are crucial in this context.
期刊最新文献
Enhancing mixed gas discrimination in e-nose system: Sparse recurrent neural networks using transient current fluctuation of SMO array sensor An effective farmer-centred mobile intelligence solution using lightweight deep learning for integrated wheat pest management TRIPLE: A blockchain-based digital twin framework for cyber–physical systems security Industrial information integration in deep space exploration and exploitation: Architecture and technology Interoperability levels and challenges of digital twins in cyber–physical systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1