Namsoo Lim , Seokyoung Hong , Jiwon Jung , Gun Young Jung , Deok Ha Woo , Jinwoo Park , Daewon Kong , Chandran Balamurugan , Sooncheol Kwon , Yusin Pak
{"title":"Enhancing mixed gas discrimination in e-nose system: Sparse recurrent neural networks using transient current fluctuation of SMO array sensor","authors":"Namsoo Lim , Seokyoung Hong , Jiwon Jung , Gun Young Jung , Deok Ha Woo , Jinwoo Park , Daewon Kong , Chandran Balamurugan , Sooncheol Kwon , Yusin Pak","doi":"10.1016/j.jii.2024.100715","DOIUrl":null,"url":null,"abstract":"<div><div>Despite recent significant advancements in gas sensor array technology, accurately identifying gases in mixed environments remains challenging. This difficulty is primarily due to the rapid and competing processes of gas molecules attaching to (adsorption) and detaching from (desorption) the sensor. In this study, we present a simple method to fabricate a 2 × 4 SMO-based gas sensor array, coupled with a sparse recurrent neural network (SRNN) that employs weight regularization. The recurrent layers of the SRNN process nonlinear information and capture temporal dependencies in the sensor data, while the regularization technique simplifies the model, making it both efficient and easier to interpret. Additionally, we introduce a novel feature: the dynamics of current, labeled as ΔI. This feature enables the SRNN model to efficiently detect the adsorption and desorption of gas molecules. We demonstrate that our model can distinguish between three intuitively indistinguishable datasets of gas species (NO<sub>2</sub>, HCHO, and a mixture) with up to 92 % accuracy. By utilizing the fast and competitive adsorption/desorption information of gas molecules, our model can be applied to various gas combination environments, unlike conventional gas sensing data measured over longer periods. By integrating the sensor array with the advanced SRNN model, we pave the way for sophisticated e-nose systems, with potential applications in advanced gas sensing technologies, such as disease diagnosis through exhaled breath analysis and the detection of toxic species in mixed gas environments.</div></div>","PeriodicalId":55975,"journal":{"name":"Journal of Industrial Information Integration","volume":"42 ","pages":"Article 100715"},"PeriodicalIF":10.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Information Integration","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452414X24001584","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Despite recent significant advancements in gas sensor array technology, accurately identifying gases in mixed environments remains challenging. This difficulty is primarily due to the rapid and competing processes of gas molecules attaching to (adsorption) and detaching from (desorption) the sensor. In this study, we present a simple method to fabricate a 2 × 4 SMO-based gas sensor array, coupled with a sparse recurrent neural network (SRNN) that employs weight regularization. The recurrent layers of the SRNN process nonlinear information and capture temporal dependencies in the sensor data, while the regularization technique simplifies the model, making it both efficient and easier to interpret. Additionally, we introduce a novel feature: the dynamics of current, labeled as ΔI. This feature enables the SRNN model to efficiently detect the adsorption and desorption of gas molecules. We demonstrate that our model can distinguish between three intuitively indistinguishable datasets of gas species (NO2, HCHO, and a mixture) with up to 92 % accuracy. By utilizing the fast and competitive adsorption/desorption information of gas molecules, our model can be applied to various gas combination environments, unlike conventional gas sensing data measured over longer periods. By integrating the sensor array with the advanced SRNN model, we pave the way for sophisticated e-nose systems, with potential applications in advanced gas sensing technologies, such as disease diagnosis through exhaled breath analysis and the detection of toxic species in mixed gas environments.
期刊介绍:
The Journal of Industrial Information Integration focuses on the industry's transition towards industrial integration and informatization, covering not only hardware and software but also information integration. It serves as a platform for promoting advances in industrial information integration, addressing challenges, issues, and solutions in an interdisciplinary forum for researchers, practitioners, and policy makers.
The Journal of Industrial Information Integration welcomes papers on foundational, technical, and practical aspects of industrial information integration, emphasizing the complex and cross-disciplinary topics that arise in industrial integration. Techniques from mathematical science, computer science, computer engineering, electrical and electronic engineering, manufacturing engineering, and engineering management are crucial in this context.