{"title":"Carbon cycling through plant and fungal herbarium specimens tracks the Suess effect over more than a century of environmental change","authors":"Talia Michaud , Erik Hobbie , Peter Kennedy","doi":"10.1016/j.funeco.2024.101372","DOIUrl":null,"url":null,"abstract":"<div><p>Although the anthropogenic decline in atmospheric carbon stable isotope ratios (δ<sup>13</sup>C) over the last 150 years (termed the Suess effect) is well-studied, how different terrestrial trophic levels and modes reflect this decline remains unresolved. To evaluate the Suess effect as an opportunistic tracer of terrestrial forest carbon cycling, this study analyzed the δ<sup>13</sup>C in herbarium specimens collected in Minnesota, USA from 1877 to 2019. Our results suggest that both broadleaf trees and ectomycorrhizal fungi relied on recent photosynthate to produce leaves and sporocarps, while saprotrophic fungi on average used carbon fixed from the atmosphere 32–55 years ago for sporocarp construction. The δ<sup>13</sup>C values of saprotrophic fungal collections were also sensitive to the age of their plant carbon substrate, with sporocarps of twig specialists tracking changes in atmospheric δ<sup>13</sup>C more closely than saprotrophs growing on logs. Collectively, this study indicates that natural history collections can quantitatively track carbon cycling among plants and fungi over time.</p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"71 ","pages":"Article 101372"},"PeriodicalIF":1.9000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal Ecology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1754504824000436","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Although the anthropogenic decline in atmospheric carbon stable isotope ratios (δ13C) over the last 150 years (termed the Suess effect) is well-studied, how different terrestrial trophic levels and modes reflect this decline remains unresolved. To evaluate the Suess effect as an opportunistic tracer of terrestrial forest carbon cycling, this study analyzed the δ13C in herbarium specimens collected in Minnesota, USA from 1877 to 2019. Our results suggest that both broadleaf trees and ectomycorrhizal fungi relied on recent photosynthate to produce leaves and sporocarps, while saprotrophic fungi on average used carbon fixed from the atmosphere 32–55 years ago for sporocarp construction. The δ13C values of saprotrophic fungal collections were also sensitive to the age of their plant carbon substrate, with sporocarps of twig specialists tracking changes in atmospheric δ13C more closely than saprotrophs growing on logs. Collectively, this study indicates that natural history collections can quantitatively track carbon cycling among plants and fungi over time.
期刊介绍:
Fungal Ecology publishes investigations into all aspects of fungal ecology, including the following (not exclusive): population dynamics; adaptation; evolution; role in ecosystem functioning, nutrient cycling, decomposition, carbon allocation; ecophysiology; intra- and inter-specific mycelial interactions, fungus-plant (pathogens, mycorrhizas, lichens, endophytes), fungus-invertebrate and fungus-microbe interaction; genomics and (evolutionary) genetics; conservation and biodiversity; remote sensing; bioremediation and biodegradation; quantitative and computational aspects - modelling, indicators, complexity, informatics. The usual prerequisites for publication will be originality, clarity, and significance as relevant to a better understanding of the ecology of fungi.