Optimizing doping thresholds for enhanced scintillation in 2D hybrid organic–inorganic perovskites

IF 5.9 3区 材料科学 Q2 CHEMISTRY, PHYSICAL FlatChem Pub Date : 2024-06-28 DOI:10.1016/j.flatc.2024.100701
Francesco Maddalena , Michal Makowski , Chengyuan Xiao , Md Abdul Kuddus Sheikh , Dominik Kowal , Marcin E. Witkowski , Konrad J. Drozdowski , Somnath Mahato , Christophe Dujardin , Roberto Calà , Etiennette Auffray , Muhammad Haris Mahyuddin , Winicjusz Drozdowski , Muhammad Danang Birowosuto , Cuong Dang
{"title":"Optimizing doping thresholds for enhanced scintillation in 2D hybrid organic–inorganic perovskites","authors":"Francesco Maddalena ,&nbsp;Michal Makowski ,&nbsp;Chengyuan Xiao ,&nbsp;Md Abdul Kuddus Sheikh ,&nbsp;Dominik Kowal ,&nbsp;Marcin E. Witkowski ,&nbsp;Konrad J. Drozdowski ,&nbsp;Somnath Mahato ,&nbsp;Christophe Dujardin ,&nbsp;Roberto Calà ,&nbsp;Etiennette Auffray ,&nbsp;Muhammad Haris Mahyuddin ,&nbsp;Winicjusz Drozdowski ,&nbsp;Muhammad Danang Birowosuto ,&nbsp;Cuong Dang","doi":"10.1016/j.flatc.2024.100701","DOIUrl":null,"url":null,"abstract":"<div><p>Two-dimensional hybrid organic–inorganic perovskite (2D-HOIP) crystals, in particular lead-bromide perovskites, exhibit great promise as scintillators due to their superior environmental stability compared to their 3D counterparts, offering high light yields and rapid decay times. These cost-effective, solution-processable materials demonstrate potential for efficient wide-energy radiation detection. In this paper we focus on investigating the effect of partial substitution of n-butylammonium (BA) cation with <em>tert</em>-butylammonium (t-Bu) cation within the butylammonium lead bromide (<span><math><mrow><msub><mrow><mi>BA</mi></mrow><mrow><mn>2</mn><mo>-</mo><mi>x</mi></mrow></msub><msub><mrow><mi>tBu</mi></mrow><mrow><mi>x</mi></mrow></msub><msub><mrow><mi>PbBr</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow></math></span>) structure and its impact on luminescence and scintillation properties. We observe that inclusion up to 5 % of t-Bu (x = 0.1) within the structure leads to a narrowing of the bandgap, leading also to an improvement of the light yield by 10 % and lowering of the energy resolution, compared to pristine <span><math><mrow><msub><mrow><mi>BA</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>PbBr</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow></math></span>. The bandgap widens, compared to pristine <span><math><mrow><msub><mrow><mi>BA</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>PbBr</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow></math></span>, with higher concentrations above 5 %, resulting in effects for the scintillating properties of the 2D-HOIP at room temperature at t-Bu concentrations above 5 %, with reduced light yield and broadened energy resolution. Higher t-Bu concentration (x = 0.4) show very poor room temperature scintillation but increased efficiency at cryogenic temperatures below 50 K. The results shown in this paper demonstrate the fundamental limitation of organic cation mixing levels for scintillation efficiency enhancement.</p></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"47 ","pages":"Article 100701"},"PeriodicalIF":5.9000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlatChem","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452262724000953","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional hybrid organic–inorganic perovskite (2D-HOIP) crystals, in particular lead-bromide perovskites, exhibit great promise as scintillators due to their superior environmental stability compared to their 3D counterparts, offering high light yields and rapid decay times. These cost-effective, solution-processable materials demonstrate potential for efficient wide-energy radiation detection. In this paper we focus on investigating the effect of partial substitution of n-butylammonium (BA) cation with tert-butylammonium (t-Bu) cation within the butylammonium lead bromide (BA2-xtBuxPbBr4) structure and its impact on luminescence and scintillation properties. We observe that inclusion up to 5 % of t-Bu (x = 0.1) within the structure leads to a narrowing of the bandgap, leading also to an improvement of the light yield by 10 % and lowering of the energy resolution, compared to pristine BA2PbBr4. The bandgap widens, compared to pristine BA2PbBr4, with higher concentrations above 5 %, resulting in effects for the scintillating properties of the 2D-HOIP at room temperature at t-Bu concentrations above 5 %, with reduced light yield and broadened energy resolution. Higher t-Bu concentration (x = 0.4) show very poor room temperature scintillation but increased efficiency at cryogenic temperatures below 50 K. The results shown in this paper demonstrate the fundamental limitation of organic cation mixing levels for scintillation efficiency enhancement.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化掺杂阈值以增强二维有机-无机混合包晶石的闪烁能力
二维杂化有机-无机包晶石(2D-HOIP)晶体,特别是溴化铅包晶石,由于其环境稳定性优于三维同类晶体,具有高光产率和快速衰减时间,因此作为闪烁体大有可为。这些成本效益高、可溶液加工的材料展示了高效宽能辐射探测的潜力。在本文中,我们重点研究了在丁基溴化铵铅(BA2-xtBuxPbBr4)结构中用叔丁基铵(t-Bu)阳离子部分取代正丁基铵(BA)阳离子的效果及其对发光和闪烁特性的影响。我们观察到,与原始的 BA2PbBr4 相比,在该结构中加入高达 5% 的 t-Bu(x = 0.1)会导致带隙变窄,从而将光产率提高 10%,并降低能量分辨率。与原始的 BA2PbBr4 相比,带隙随着浓度超过 5% 而变宽,从而影响了二维-HOIP 在室温下 t-Bu 浓度超过 5% 时的闪烁特性,降低了光产率,扩大了能量分辨率。更高的 t-Bu 浓度(x = 0.4)显示出室温闪烁性能很差,但在 50 K 以下的低温条件下却能提高效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
FlatChem
FlatChem Multiple-
CiteScore
8.40
自引率
6.50%
发文量
104
审稿时长
26 days
期刊介绍: FlatChem - Chemistry of Flat Materials, a new voice in the community, publishes original and significant, cutting-edge research related to the chemistry of graphene and related 2D & layered materials. The overall aim of the journal is to combine the chemistry and applications of these materials, where the submission of communications, full papers, and concepts should contain chemistry in a materials context, which can be both experimental and/or theoretical. In addition to original research articles, FlatChem also offers reviews, minireviews, highlights and perspectives on the future of this research area with the scientific leaders in fields related to Flat Materials. Topics of interest include, but are not limited to, the following: -Design, synthesis, applications and investigation of graphene, graphene related materials and other 2D & layered materials (for example Silicene, Germanene, Phosphorene, MXenes, Boron nitride, Transition metal dichalcogenides) -Characterization of these materials using all forms of spectroscopy and microscopy techniques -Chemical modification or functionalization and dispersion of these materials, as well as interactions with other materials -Exploring the surface chemistry of these materials for applications in: Sensors or detectors in electrochemical/Lab on a Chip devices, Composite materials, Membranes, Environment technology, Catalysis for energy storage and conversion (for example fuel cells, supercapacitors, batteries, hydrogen storage), Biomedical technology (drug delivery, biosensing, bioimaging)
期刊最新文献
In-situ grown hexagonal rod-like ZIF-L(Zn/Co) variant on reduced graphene oxide (rGO) for the enhanced electrochemical sensing of acetaminophen Review on multifunctional elastomeric composites-based sensing for monitoring of aquatic and terrestrial living species A high-performance boron nitride nanocomposite coating with enhanced anticorrosion and flame retardant properties for aerospace applications Porous N, P co-doping Ti3C2Tx MXene for high-performance capacitive deionization Surface functionalization of WS2 nanosheets with Poly(N-vinylcaprolactam) and vinylacetic acid for targeted drug release in prostate cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1