Influence of new AA 2xxx layers on the strength and damage responses of fibre metal laminates during soft body impact

IF 6.3 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES Composite Structures Pub Date : 2024-07-02 DOI:10.1016/j.compstruct.2024.118339
S. Kavitha Mol , A. Sadiq
{"title":"Influence of new AA 2xxx layers on the strength and damage responses of fibre metal laminates during soft body impact","authors":"S. Kavitha Mol ,&nbsp;A. Sadiq","doi":"10.1016/j.compstruct.2024.118339","DOIUrl":null,"url":null,"abstract":"<div><p>This study focuses on analysing the effect of new AA 2xxx layers on the strength and damage response of Fibre Metal Laminates (FMLs) during bird strikes. New aluminium alloy (new AA 2xxx) designed for the leading edge of aircraft to withstand bird strikes. Four laminates of different metal thicknesses and stacking sequences were modelled with this new 2xxx aluminium alloy. These laminates were analysed based on the impact responses (reaction force, deflection, and energy dissipation) and damage behaviours (metal failure, matrix failure, fibre failure, and delamination) during a soft body (bird) impact. A comparative study found that four FMLs exhibited different impact behaviours in terms of metal thickness and layup sequence. The FML configuration (FML 5–2/1–0.2) arranges glass/epoxy layers between thinner layers of new aluminium alloy and is best suited for designing the leading edges of wing and tail structures. The new FML increases ultimate bird impact strength by 23.65% compared to conventional GLARE™ laminates.</p></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822324004677","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

This study focuses on analysing the effect of new AA 2xxx layers on the strength and damage response of Fibre Metal Laminates (FMLs) during bird strikes. New aluminium alloy (new AA 2xxx) designed for the leading edge of aircraft to withstand bird strikes. Four laminates of different metal thicknesses and stacking sequences were modelled with this new 2xxx aluminium alloy. These laminates were analysed based on the impact responses (reaction force, deflection, and energy dissipation) and damage behaviours (metal failure, matrix failure, fibre failure, and delamination) during a soft body (bird) impact. A comparative study found that four FMLs exhibited different impact behaviours in terms of metal thickness and layup sequence. The FML configuration (FML 5–2/1–0.2) arranges glass/epoxy layers between thinner layers of new aluminium alloy and is best suited for designing the leading edges of wing and tail structures. The new FML increases ultimate bird impact strength by 23.65% compared to conventional GLARE™ laminates.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新型 AA 2xxx 层对纤维金属层压板在软体冲击过程中的强度和损伤响应的影响
本研究的重点是分析新 AA 2xxx 层对鸟击时金属纤维层压板 (FML) 的强度和损坏响应的影响。为飞机前缘设计的新型铝合金(新型 AA 2xxx)可抵御鸟击。使用这种新型 2xxx 铝合金对四种不同金属厚度和堆叠顺序的层压板进行了建模。根据软体(鸟类)撞击时的撞击响应(反作用力、挠度和能量耗散)和损坏行为(金属破坏、基体破坏、纤维破坏和分层)对这些层压板进行了分析。比较研究发现,四种 FML 在金属厚度和铺层顺序方面表现出不同的冲击行为。FML 配置(FML 5-2/1-0.2)在较薄的新型铝合金层之间安排了玻璃/环氧层,最适合设计机翼和尾翼结构的前缘。与传统的 GLARE™ 层压板相比,新型 FML 可将鸟撞击极限强度提高 23.65%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Composite Structures
Composite Structures 工程技术-材料科学:复合
CiteScore
12.00
自引率
12.70%
发文量
1246
审稿时长
78 days
期刊介绍: The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials. The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.
期刊最新文献
Stress concentration in the auxetic porous screw and its fatigue behavior Modeling impact compressive behaviors of 3D woven composites under low temperature and strain rate effect A reliable methodology for the preliminary design of multidirectional composite open-hole plates using the coupled criterion Experimental tensile testing of the lap joint composite laminates supported with the acoustic emission and machine learning techniques Multifunctional design of an X-lattice interlocked sandwich structure with integrated electromagnetic wave regulation, convective heat transfer and load bearing performances
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1