首页 > 最新文献

Composite Structures最新文献

英文 中文
Enhanced prediction of reflected spectrum for FBG sensors with metallic coating embedded in CFRP composites: Unveiling the impact of process-induced residual stress and coating thickness 增强嵌入 CFRP 复合材料金属涂层的 FBG 传感器的反射光谱预测:揭示工艺引起的残余应力和涂层厚度的影响
IF 6.3 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES Pub Date : 2024-06-28 DOI: 10.1016/j.compstruct.2024.118321
Dong-Hyeop Kim , Sang-Woo Kim

The occurrence of peak-split or distortion in the reflected light of fiber Bragg grating (FBG) sensors with metallic coatings embedded in composites is inevitable during the curing process, regardless of protection layers. In this study, we present a comprehensive methodology to numerically predict the reflected spectrum of metallic-coated FBG sensors, considering the process-induced residual stress in carbon fiber/epoxy composites. The finite element analysis was utilized to simulate the residual stress, which primarily arises from mechanical, thermal, and chemical cure mechanisms of the composites, including the thermosetting resin. Subsequently, the reflected spectra were calculated using the coupled mode theory. Contrary to common expectations, our findings indicate that the coating thickness has minimal influence on the reflected spectrum, while the residual stress and embedding position significantly impact it. By employing this proposed methodology, the number of experimental trials can be reduced, enabling the development of robust structural and state monitoring systems for composites using metallic-coated FBG sensors.

在复合材料中嵌入金属涂层的光纤布拉格光栅 (FBG) 传感器在固化过程中不可避免地会出现峰值分裂或反射光变形,无论是否有保护层。在本研究中,考虑到碳纤维/环氧树脂复合材料在加工过程中产生的残余应力,我们提出了一种全面的方法来对金属涂层 FBG 传感器的反射光谱进行数值预测。残余应力主要来自复合材料(包括热固性树脂)的机械、热和化学固化机制,利用有限元分析来模拟残余应力。随后,利用耦合模式理论计算了反射光谱。与通常的预期相反,我们的研究结果表明,涂层厚度对反射光谱的影响微乎其微,而残余应力和嵌入位置则对其有重大影响。通过采用这种建议的方法,可以减少实验次数,从而利用金属涂层 FBG 传感器开发出稳健的复合材料结构和状态监测系统。
{"title":"Enhanced prediction of reflected spectrum for FBG sensors with metallic coating embedded in CFRP composites: Unveiling the impact of process-induced residual stress and coating thickness","authors":"Dong-Hyeop Kim ,&nbsp;Sang-Woo Kim","doi":"10.1016/j.compstruct.2024.118321","DOIUrl":"https://doi.org/10.1016/j.compstruct.2024.118321","url":null,"abstract":"<div><p>The occurrence of peak-split or distortion in the reflected light of fiber Bragg grating (FBG) sensors with metallic coatings embedded in composites is inevitable during the curing process, regardless of protection layers. In this study, we present a comprehensive methodology to numerically predict the reflected spectrum of metallic-coated FBG sensors, considering the process-induced residual stress in carbon fiber/epoxy composites. The finite element analysis was utilized to simulate the residual stress, which primarily arises from mechanical, thermal, and chemical cure mechanisms of the composites, including the thermosetting resin. Subsequently, the reflected spectra were calculated using the coupled mode theory. Contrary to common expectations, our findings indicate that the coating thickness has minimal influence on the reflected spectrum, while the residual stress and embedding position significantly impact it. By employing this proposed methodology, the number of experimental trials can be reduced, enabling the development of robust structural and state monitoring systems for composites using metallic-coated FBG sensors.</p></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":null,"pages":null},"PeriodicalIF":6.3,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141484258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flexible, lightweight, tunable robotic arms enabled by X-tensegrity inspired structures 受 X-tensegrity 结构启发的灵活、轻质、可调机械臂
IF 6.3 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES Pub Date : 2024-06-28 DOI: 10.1016/j.compstruct.2024.118331
Xiao-Hui Yue , Xu Yin , Zi-Yan Sun , Long-Yue Liu , Yantao Wang , Guang-Kui Xu , Changyong Cao , Li-Yuan Zhang

Robotic arms have remarkable applications in diverse fields such as medical rehabilitation, disaster relief, and space exploration. Enhancing their rigidity, load-bearing capacity, and motion simplicity is key to broadening their usage. Utilizing the admirable flexibility and strength of tensegrity structures, made of rigid bars and elastic strings, we introduce a new type of flexible robotic arm. This arm is constructed using a sequence of two-dimensional X-tensegrity inspired modules. Each module comprises two sets of triangular bars linked by three strings, enhancing the arm’s ability to deform and resist impact forces. The joints between modules are stiff, allowing for angular adjustments to create three-dimensional configurations with adjustable stiffness and curvature. Through theoretical analysis, simulations, and experiments, we have shown that this tensegrity-based robotic arm exhibits superior stability, flexibility, and scalability.

机械臂在医疗康复、救灾和太空探索等多个领域都有出色的应用。提高机械臂的刚度、承重能力和运动简易性是扩大其应用范围的关键。利用由刚性杆和弹性弦组成的张拉整体结构令人钦佩的柔韧性和强度,我们推出了一种新型柔性机械臂。这种机械臂由一系列二维 X-张拉整体模块构成。每个模块由两组三角形杆组成,并由三根绳索连接,从而增强了机械臂的变形和抗冲击能力。模块之间的连接处具有一定的硬度,可以进行角度调整,从而形成具有可调硬度和曲率的三维结构。通过理论分析、模拟和实验,我们证明了这种基于张力整体的机械臂具有卓越的稳定性、灵活性和可扩展性。
{"title":"Flexible, lightweight, tunable robotic arms enabled by X-tensegrity inspired structures","authors":"Xiao-Hui Yue ,&nbsp;Xu Yin ,&nbsp;Zi-Yan Sun ,&nbsp;Long-Yue Liu ,&nbsp;Yantao Wang ,&nbsp;Guang-Kui Xu ,&nbsp;Changyong Cao ,&nbsp;Li-Yuan Zhang","doi":"10.1016/j.compstruct.2024.118331","DOIUrl":"https://doi.org/10.1016/j.compstruct.2024.118331","url":null,"abstract":"<div><p>Robotic arms have remarkable applications in diverse fields such as medical rehabilitation, disaster relief, and space exploration. Enhancing their rigidity, load-bearing capacity, and motion simplicity is key to broadening their usage. Utilizing the admirable flexibility and strength of tensegrity structures, made of rigid bars and elastic strings, we introduce a new type of flexible robotic arm. This arm is constructed using a sequence of two-dimensional X-tensegrity inspired modules. Each module comprises two sets of triangular bars linked by three strings, enhancing the arm’s ability to deform and resist impact forces. The joints between modules are stiff, allowing for angular adjustments to create three-dimensional configurations with adjustable stiffness and curvature. Through theoretical analysis, simulations, and experiments, we have shown that this tensegrity-based robotic arm exhibits superior stability, flexibility, and scalability.</p></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":null,"pages":null},"PeriodicalIF":6.3,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141487333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental and numerical study of resin permeation effect on ballistic behavior of fabric laminate 树脂渗透对织物层压板弹道行为影响的实验和数值研究
IF 6.3 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES Pub Date : 2024-06-26 DOI: 10.1016/j.compstruct.2024.118327
Yanfei Yang , Junzhi Liu , Wanwan Cao , Dongsheng Mao

This study aims to identify the influence of resin permeation on ballistic responses of fabric laminates. According to experimental results, when the resin permeation degree was improved, the yarn mobility was greatly constrained due to increasing of the bonding force, and the specific energy absorption of laminates under ballistic impact was degraded in comparison with that of the neat fabric. Different resin permeation states in a single yarn and fabric were simulated through Finite Element (FE) modeling at a fiber-bundle level. For a given resin ratio of 15%, semi-permeation of resin in a single yarn was benefit for energy absorption due to even distribution of impact load at the early impact, but full-permeation of resin resulted in energy absorption degradation due to high stress concentration and premature failure. For laminate models, the yarn mobility was severely constrained not only by resin bonding but also by yarns interlacement. In comparison with the neat fabric, stress distribution area on laminates was decreased 30–70%. Yarns contribution to energy absorption was significantly reduced in particular for principal yarns. Such results indicated that perfect resin permeation in armor-grade composite played a negative effect on ballistic energy dissipation due to low material utilization efficiency.

本研究旨在确定树脂渗透对织物层压板弹道响应的影响。实验结果表明,当树脂渗透度提高时,由于粘合力的增加,纱线的流动性受到很大限制,层压织物在弹道冲击下的比能量吸收与纯织物相比有所下降。通过有限元(FE)建模,在纤维束水平上模拟了单根纱线和织物中不同的树脂渗透状态。在给定的 15% 树脂比率下,单根纱线中的半渗透树脂有利于吸收能量,因为在早期冲击时冲击载荷分布均匀,但全渗透树脂则会导致能量吸收能力下降,因为应力集中和过早失效。对于层压模型,纱线的流动性不仅受到树脂粘合的严重限制,还受到纱线交错的限制。与纯织物相比,层压板上的应力分布面积减少了 30-70%。纱线对能量吸收的贡献明显降低,尤其是主纱。这些结果表明,由于材料利用效率低,装甲级复合材料中的完美树脂渗透对弹道能量耗散产生了负面影响。
{"title":"Experimental and numerical study of resin permeation effect on ballistic behavior of fabric laminate","authors":"Yanfei Yang ,&nbsp;Junzhi Liu ,&nbsp;Wanwan Cao ,&nbsp;Dongsheng Mao","doi":"10.1016/j.compstruct.2024.118327","DOIUrl":"https://doi.org/10.1016/j.compstruct.2024.118327","url":null,"abstract":"<div><p>This study aims to identify the influence of resin permeation on ballistic responses of fabric laminates. According to experimental results, when the resin permeation degree was improved, the yarn mobility was greatly constrained due to increasing of the bonding force, and the specific energy absorption of laminates under ballistic impact was degraded in comparison with that of the neat fabric. Different resin permeation states in a single yarn and fabric were simulated through Finite Element (FE) modeling at a fiber-bundle level. For a given resin ratio of 15%, semi-permeation of resin in a single yarn was benefit for energy absorption due to even distribution of impact load at the early impact, but full-permeation of resin resulted in energy absorption degradation due to high stress concentration and premature failure. For laminate models, the yarn mobility was severely constrained not only by resin bonding but also by yarns interlacement. In comparison with the neat fabric, stress distribution area on laminates was decreased 30–70%. Yarns contribution to energy absorption was significantly reduced in particular for principal yarns. Such results indicated that perfect resin permeation in armor-grade composite played a negative effect on ballistic energy dissipation due to low material utilization efficiency.</p></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":null,"pages":null},"PeriodicalIF":6.3,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141487378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Closed-form analytical relationships for pentamode metamaterials 五模超材料的闭式分析关系
IF 6.3 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES Pub Date : 2024-06-26 DOI: 10.1016/j.compstruct.2024.118334
Reza Hedayati , Kaivan Mohammadi , Sattar Jedari Salami , Nima Roudbarian , Pooyan Nayyeri , Mohamad Mahdi Rafiee , Habiba Bougherara

Pentamode metamaterials are a class of extremal materials exhibiting fluid-like mechanical behavior. The mechanical properties of pentamode metamaterials arise from their unique micro-architecture, rather than their constituent material. In this research, we present closed-form analytical relationships for the elastic modulus and Poisson’s ratio of pentamode lattice structures with double-cone struts based on cubic diamond morphology. To validate our analytical solutions, we performed numerical simulations and experimental tests, which confirmed the accuracy of the derived relationships. Our findings indicate that increasing the smaller diameter (d) and the larger-to-smaller diameter ratio (α) of the double-cones increases the elastic modulus of pentamode metamaterials. However, within the considered range of d and α, the Poisson’s ratio is nearly constant and lies within the range of approximately 0.5. These analytical relationships provide valuable insight into the mechanical behavior of pentamode metamaterials, which can aid in the design and optimization of new materials with unique properties.

五模超材料是一类表现出类似流体力学行为的极端材料。五模超材料的机械特性源于其独特的微结构,而非其组成材料。在这项研究中,我们基于立方钻石形态,提出了具有双锥支柱的五模晶格结构的弹性模量和泊松比的闭式分析关系。为了验证我们的分析解,我们进行了数值模拟和实验测试,证实了推导关系的准确性。我们的研究结果表明,增大双锥的小直径(d)和大-小直径比(α)会增加五模超材料的弹性模量。然而,在考虑的 d 和 α 范围内,泊松比几乎是恒定的,大约在 0.5 的范围内。这些分析关系为五模超材料的机械行为提供了宝贵的见解,有助于设计和优化具有独特性能的新材料。
{"title":"Closed-form analytical relationships for pentamode metamaterials","authors":"Reza Hedayati ,&nbsp;Kaivan Mohammadi ,&nbsp;Sattar Jedari Salami ,&nbsp;Nima Roudbarian ,&nbsp;Pooyan Nayyeri ,&nbsp;Mohamad Mahdi Rafiee ,&nbsp;Habiba Bougherara","doi":"10.1016/j.compstruct.2024.118334","DOIUrl":"https://doi.org/10.1016/j.compstruct.2024.118334","url":null,"abstract":"<div><p>Pentamode metamaterials are a class of extremal materials exhibiting fluid-like mechanical behavior. The mechanical properties of pentamode metamaterials arise from their unique micro-architecture, rather than their constituent material. In this research, we present closed-form analytical relationships for the elastic modulus and Poisson’s ratio of pentamode lattice structures with double-cone struts based on cubic diamond morphology. To validate our analytical solutions, we performed numerical simulations and experimental tests, which confirmed the accuracy of the derived relationships. Our findings indicate that increasing the smaller diameter (<span><math><mrow><mi>d</mi></mrow></math></span>) and the larger-to-smaller diameter ratio (<span><math><mrow><mi>α</mi></mrow></math></span>) of the double-cones increases the elastic modulus of pentamode metamaterials. However, within the considered range of <span><math><mrow><mi>d</mi></mrow></math></span> and <span><math><mrow><mi>α</mi></mrow></math></span>, the Poisson’s ratio is nearly constant and lies within the range of approximately 0.5. These analytical relationships provide valuable insight into the mechanical behavior of pentamode metamaterials, which can aid in the design and optimization of new materials with unique properties.</p></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":null,"pages":null},"PeriodicalIF":6.3,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141484256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A diffusion–reaction-deformation cohesive interface for oxidization and self-healing of PyC/SiC interfacial coating 用于 PyC/SiC 界面涂层氧化和自修复的扩散-反应-变形内聚界面
IF 6.3 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES Pub Date : 2024-06-26 DOI: 10.1016/j.compstruct.2024.118332
Lizhenhui Zhou , Wenyang Liu , Yiqi Mao , Shujuan Hou

This paper presents a fully coupled thermodynamically consistent diffusion–reaction-deformation cohesive model for pyrolytic carbon (PyC)/SiC interfacial coating in fiber-reinforced composites. Arrhenius function is used to capture the chemical kinetics and the Kuhn-Tucker conditions is exploited to describe the damage evolution of interfacial coating. A strong connection between the diffusion–reaction process and interfacial mechanical deformation is established by the cohesive model, and the rules of the model parameters are discussed in detail. Implementation of the cohesive zone model is conducted in ABAQUS finite element software through the use of UEL subroutines. A mesh convergence for the model is tested and the model is validated by the comparison with the experimental results. A Representative Volume Element (RVE) model for fiber-reinforced composites at different temperatures, equipped with custom cohesive elements, is constructed to investigate the impact of PyC/SiC coating during oxidation. Two-step simulation is adopted to solve the chemo-mechanical behaviors of interfacial coating.

The impact of the interfacial coating on stress transfer between the matrix and fibers is highlighted by numerical results that demonstrate an initial decline in mechanical properties followed by an upward trend with increasing temperature. The model also captures the coupling mechanisms between the diffusion–reaction process and the interfacial deformation in the interfacial coating. Theoretical insights for fiber-reinforced composites in chemical environments are provided, guiding the design of interfacial coatings for potential engineering applications.

本文针对纤维增强复合材料中热解碳(PyC)/碳化硅(SiC)界面涂层提出了一种完全耦合的热力学一致的扩散-反应-变形内聚模型。阿伦尼乌斯函数用于捕捉化学动力学,库恩-塔克条件用于描述界面涂层的损伤演变。内聚模型建立了扩散反应过程与界面机械变形之间的紧密联系,并详细讨论了模型参数的规则。通过使用 UEL 子程序,在 ABAQUS 有限元软件中实现了内聚区模型。对模型的网格收敛性进行了测试,并通过与实验结果的对比对模型进行了验证。为研究氧化过程中 PyC/SiC 涂层的影响,构建了不同温度下纤维增强复合材料的代表体积元素(RVE)模型,并配备了定制的内聚元素。数值结果表明,随着温度的升高,机械性能最初会下降,随后呈上升趋势,这突出表明了界面涂层对基体和纤维之间应力传递的影响。该模型还捕捉到了扩散-反应过程与界面涂层中界面变形之间的耦合机制。该模型为化学环境中的纤维增强复合材料提供了理论依据,为潜在工程应用中的界面涂层设计提供了指导。
{"title":"A diffusion–reaction-deformation cohesive interface for oxidization and self-healing of PyC/SiC interfacial coating","authors":"Lizhenhui Zhou ,&nbsp;Wenyang Liu ,&nbsp;Yiqi Mao ,&nbsp;Shujuan Hou","doi":"10.1016/j.compstruct.2024.118332","DOIUrl":"https://doi.org/10.1016/j.compstruct.2024.118332","url":null,"abstract":"<div><p>This paper presents a fully coupled thermodynamically consistent diffusion–reaction-deformation cohesive model for pyrolytic carbon (PyC)/SiC interfacial coating in fiber-reinforced composites. Arrhenius function is used to capture the chemical kinetics and the Kuhn-Tucker conditions is exploited to describe the damage evolution of interfacial coating. A strong connection between the diffusion–reaction process and interfacial mechanical deformation is established by the cohesive model, and the rules of the model parameters are discussed in detail. Implementation of the cohesive zone model is conducted in ABAQUS finite element software through the use of UEL subroutines. A mesh convergence for the model is tested and the model is validated by the comparison with the experimental results. A Representative Volume Element (RVE) model for fiber-reinforced composites at different temperatures, equipped with custom cohesive elements, is constructed to investigate the impact of PyC/SiC coating during oxidation. Two-step simulation is adopted to solve the chemo-mechanical behaviors of interfacial coating.</p><p>The impact of the interfacial coating on stress transfer between the matrix and fibers is highlighted by numerical results that demonstrate an initial decline in mechanical properties followed by an upward trend with increasing temperature. The model also captures the coupling mechanisms between the diffusion–reaction process and the interfacial deformation in the interfacial coating. Theoretical insights for fiber-reinforced composites in chemical environments are provided, guiding the design of interfacial coatings for potential engineering applications.</p></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":null,"pages":null},"PeriodicalIF":6.3,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141484259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predicting effective elastic modulus of CNT metal matrix nanocomposites: A developed micromechanical model with agglomeration and interphase effects 预测 CNT 金属基纳米复合材料的有效弹性模量:包含团聚和相间效应的微观力学模型
IF 6.3 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES Pub Date : 2024-06-26 DOI: 10.1016/j.compstruct.2024.118317
Javad Payandehpeyman , Mahdi Hedayatian , Mojtaba Mazaheri

Agglomeration and interphase region of fillers are two important factors that affect the mechanical properties of metal matrix composites reinforced with carbon nanotubes (CNT-CMMs). However, most of the existing theoretical models predict an ascending linear in strength for composites with increasing filler content, which disagrees with the experimental results, especially at high filler loading. In fact, at high CNT concentrations, agglomeration and weak interphase region bonding reduce the strength and consequently degrade the mechanical properties of composites. Based on the mean-field theory, we present a novel micromechanical model to predict the elastic modulus of CNT-CMMs by considering the effects of these two factors. Furthermore, we investigate the effect of other parameters such as CNTs aspect ratio, agglomeration amount, interphase layer thickness and modulus, and matrix modulus on the elastic modulus of CNT-CMMs. Finally, we validate our model by comparing it with numerous experimental outcomes from the literature signifies good precision. Using this model, it is possible to optimize the filler value and also maximize the elastic modulus, which can be a powerful tool for designing the CNT-CMMs.

填料的团聚和相间区域是影响碳纳米管(CNT-CMMs)增强金属基复合材料机械性能的两个重要因素。然而,现有的大多数理论模型都预测,随着填料含量的增加,复合材料的强度呈线性上升趋势,这与实验结果不符,尤其是在填料含量较高的情况下。事实上,在 CNT 浓度较高的情况下,团聚和相间区域结合力较弱会降低强度,进而降低复合材料的机械性能。基于均场理论,我们提出了一种新型微机械模型,通过考虑这两个因素的影响来预测 CNT-CMM 的弹性模量。此外,我们还研究了其他参数对 CNT-CMM 弹性模量的影响,如 CNT 长径比、团聚量、相间层厚度和模量以及基体模量。最后,我们将模型与大量文献中的实验结果进行比较,验证了模型的精确性。利用该模型,可以优化填料值,同时最大限度地提高弹性模量,是设计 CNT-CMM 的有力工具。
{"title":"Predicting effective elastic modulus of CNT metal matrix nanocomposites: A developed micromechanical model with agglomeration and interphase effects","authors":"Javad Payandehpeyman ,&nbsp;Mahdi Hedayatian ,&nbsp;Mojtaba Mazaheri","doi":"10.1016/j.compstruct.2024.118317","DOIUrl":"https://doi.org/10.1016/j.compstruct.2024.118317","url":null,"abstract":"<div><p>Agglomeration and interphase region of fillers are two important factors that affect the mechanical properties of metal matrix composites reinforced with carbon nanotubes (CNT-CMMs). However, most of the existing theoretical models predict an ascending linear in strength for composites with increasing filler content, which disagrees with the experimental results, especially at high filler loading. In fact, at high CNT concentrations, agglomeration and weak interphase region bonding reduce the strength and consequently degrade the mechanical properties of composites. Based on the mean-field theory, we present a novel micromechanical model to predict the elastic modulus of CNT-CMMs by considering the effects of these two factors. Furthermore, we investigate the effect of other parameters such as CNTs aspect ratio, agglomeration amount, interphase layer thickness and modulus, and matrix modulus on the elastic modulus of CNT-CMMs. Finally, we validate our model by comparing it with numerous experimental outcomes from the literature signifies good precision. Using this model, it is possible to optimize the filler value and also maximize the elastic modulus, which can be a powerful tool for designing the CNT-CMMs.</p></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":null,"pages":null},"PeriodicalIF":6.3,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141484254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of TiC particle size on the microstructure and properties of CuCr-TiC composites manufactured by powder metallurgy TiC 粒径对粉末冶金制造的 CuCr-TiC 复合材料微观结构和性能的影响
IF 6.3 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES Pub Date : 2024-06-25 DOI: 10.1016/j.compstruct.2024.118323
Xiukuang Zhang , Qian Lei , Xiangyue Meng , Xueying Cao , Jie Yin , Shuang Zhou , Xiaoyan Zhang , Yanlin Jia

Poor thermal stability limits the application of CuCr alloys at high temperatures. In this work, non-stoichiometric TiC particles (7 vol%) reinforced CuCr matrix composites were fabricated. The effects of TiC powders with different particle size (1 μm, 2 μm, 4 μm) on the microstructure and properties were studied. The diffusion of supersaturated Ti atoms induced the formation of Cu (Ti) solid solution transition layer at the interface, which improved the interface bonding. Dislocations caused by thermal mismatch promoted heterogeneous nucleation, which led to the precipitation of coarse Cr clusters. The strength and plasticity of composites increased with the reduction of TiC particle size. Strengthening and fracture mechanisms were discussed, and the strength difference was mainly attributed to thermal mismatch strengthening. Meanwhile, TiC particles refined the matrix grains and improved the activation energy of grain growth. The strength and softening temperature of CuCr alloy were 520 MPa and 540 °C, while that of CuCr-1TiC composite were 530 MPa and 915 °C. CuCr-TiC composites displayed much superior thermal stability than the CuCr alloy. These findings provide practical approaches for developing particle-reinforced copper matrix composites with excellent interfacial bonding and thermal stability.

热稳定性差限制了铜铬合金在高温下的应用。在这项工作中,制备了非共沸态 TiC 颗粒(7 vol%)增强 CuCr 基复合材料。研究了不同粒度(1 μm、2 μm、4 μm)的 TiC 粉末对微观结构和性能的影响。过饱和 Ti 原子的扩散在界面上形成了 Cu(Ti)固溶体过渡层,从而改善了界面结合。热失配引起的位错促进了异质成核,从而导致粗大的铬团块析出。复合材料的强度和塑性随着 TiC 粒径的减小而增加。对强化和断裂机制进行了讨论,强度差异主要归因于热错配强化。同时,TiC 颗粒细化了基体晶粒,提高了晶粒生长的活化能。CuCr 合金的强度和软化温度分别为 520 MPa 和 540 ℃,而 CuCr-1TiC 复合材料的强度和软化温度分别为 530 MPa 和 915 ℃。CuCr-TiC 复合材料的热稳定性远远优于 CuCr 合金。这些发现为开发具有优异界面结合力和热稳定性的颗粒增强铜基复合材料提供了实用方法。
{"title":"Effect of TiC particle size on the microstructure and properties of CuCr-TiC composites manufactured by powder metallurgy","authors":"Xiukuang Zhang ,&nbsp;Qian Lei ,&nbsp;Xiangyue Meng ,&nbsp;Xueying Cao ,&nbsp;Jie Yin ,&nbsp;Shuang Zhou ,&nbsp;Xiaoyan Zhang ,&nbsp;Yanlin Jia","doi":"10.1016/j.compstruct.2024.118323","DOIUrl":"https://doi.org/10.1016/j.compstruct.2024.118323","url":null,"abstract":"<div><p>Poor thermal stability limits the application of CuCr alloys at high temperatures. In this work, non-stoichiometric TiC particles (7 vol%) reinforced CuCr matrix composites were fabricated. The effects of TiC powders with different particle size (1 μm, 2 μm, 4 μm) on the microstructure and properties were studied. The diffusion of supersaturated Ti atoms induced the formation of Cu (Ti) solid solution transition layer at the interface, which improved the interface bonding. Dislocations caused by thermal mismatch promoted heterogeneous nucleation, which led to the precipitation of coarse Cr clusters. The strength and plasticity of composites increased with the reduction of TiC particle size. Strengthening and fracture mechanisms were discussed, and the strength difference was mainly attributed to thermal mismatch strengthening. Meanwhile, TiC particles refined the matrix grains and improved the activation energy of grain growth. The strength and softening temperature of CuCr alloy were 520 MPa and 540 °C, while that of CuCr-1TiC composite were 530 MPa and 915 °C. CuCr-TiC composites displayed much superior thermal stability than the CuCr alloy. These findings provide practical approaches for developing particle-reinforced copper matrix composites with excellent interfacial bonding and thermal stability.</p></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":null,"pages":null},"PeriodicalIF":6.3,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141487379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of moisture absorption on penetration performance of FRP sandwich structures 吸湿对玻璃钢夹层结构渗透性能的影响
IF 6.3 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES Pub Date : 2024-06-25 DOI: 10.1016/j.compstruct.2024.118319
Norman Osa-uwagboe , Vadim V. Silberschmidt , Konstantinos P. Baxevanakis , Emrah Demirci

Fiber-reinforced plastic sandwich structures (FRPSSs) are increasingly used in marine applications thanks to their high levels of stiffness, lightweight, buoyancy and damage resistance to penetration and impacts. This paper investigates the effect of exposure to seawater conditions on mechanical behavior of FRPSSs with various core configurations loaded with indenters with different geometries. A new in-situ acoustic emission (AE) methodology is applied to monitor the moisture evolution process, while X-ray micro-computed tomography validated its influence on out-of-plane failure modes observed in quasi-static indentation experiments. Results indicate that AE velocity can effectively monitor the moisture uptake, serving as an in situ structural health monitoring approach. It was also revealed that the core configuration had a limited effect on moisture ingress. Samples exposed to sharp indentation exhibited the greatest decrease in load-bearing capacity (in excess of 50% in some cases) while that for blunt indentation was the lowest. This can be explained by reduced penetration forces resulting from matrix plasticization and degraded matrix/fiber interface, exacerbated by a smaller contact area. Also, early damage initiation and intensified damage progression were observed for sharp indenters after the seawater exposure. The core of FRPSSs significantly influenced localized damage in samples indented with conical and flat indenters, unlike those subjected to hemispherical ones. The seawater exposure adversely affected the energy absorption and penetration performance, enhancing macroscale damage mechanisms. These findings offer valuable insights for design and optimization of FRPSSs for marine applications.

纤维增强塑料夹层结构(FRPSS)具有刚度高、重量轻、浮力大、抗穿透和抗冲击等优点,因此在海洋应用中得到越来越广泛的应用。本文研究了暴露在海水条件下对 FRPSS 的机械行为的影响,FRPSS 具有不同的核心配置,装有不同几何形状的压头。采用了一种新的原位声发射(AE)方法来监测水分演变过程,同时利用 X 射线微观计算机断层扫描验证了其对准静态压痕实验中观察到的面外破坏模式的影响。结果表明,AE 速度可有效监测水分吸收,是一种现场结构健康监测方法。研究还发现,芯材结构对水分吸收的影响有限。受到尖锐压痕作用的样本承载能力下降幅度最大(在某些情况下超过 50%),而受到钝压痕作用的样本承载能力下降幅度最小。这是因为基体塑化和基体/纤维界面退化导致穿透力降低,而较小的接触面积又加剧了这一现象。此外,在海水暴露后,还观察到尖锐压痕的早期损伤开始和损伤发展加剧。与半球形压头不同,FRPSS 的核心对锥形和扁平压头压入的样品的局部损伤有明显影响。海水暴露对能量吸收和穿透性能产生了不利影响,增强了宏观损伤机制。这些发现为设计和优化用于海洋的 FRPSS 提供了宝贵的见解。
{"title":"Effects of moisture absorption on penetration performance of FRP sandwich structures","authors":"Norman Osa-uwagboe ,&nbsp;Vadim V. Silberschmidt ,&nbsp;Konstantinos P. Baxevanakis ,&nbsp;Emrah Demirci","doi":"10.1016/j.compstruct.2024.118319","DOIUrl":"https://doi.org/10.1016/j.compstruct.2024.118319","url":null,"abstract":"<div><p>Fiber-reinforced plastic sandwich structures (FRPSSs) are increasingly used in marine applications thanks to their high levels of stiffness, lightweight, buoyancy and damage resistance to penetration and impacts. This paper investigates the effect of exposure to seawater conditions on mechanical behavior of FRPSSs with various core configurations loaded with indenters with different geometries. A new in-situ acoustic emission (AE) methodology is applied to monitor the moisture evolution process, while X-ray micro-computed tomography validated its influence on out-of-plane failure modes observed in quasi-static indentation experiments. Results indicate that AE velocity can effectively monitor the moisture uptake, serving as an in situ structural health monitoring approach. It was also revealed that the core configuration had a limited effect on moisture ingress. Samples exposed to sharp indentation exhibited the greatest decrease in load-bearing capacity (in excess of 50% in some cases) while that for blunt indentation was the lowest. This can be explained by reduced penetration forces resulting from matrix plasticization and degraded matrix/fiber interface, exacerbated by a smaller contact area. Also, early damage initiation and intensified damage progression were observed for sharp indenters after the seawater exposure. The core of FRPSSs significantly influenced localized damage in samples indented with conical and flat indenters, unlike those subjected to hemispherical ones. The seawater exposure adversely affected the energy absorption and penetration performance, enhancing macroscale damage mechanisms. These findings offer valuable insights for design and optimization of FRPSSs for marine applications.</p></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":null,"pages":null},"PeriodicalIF":6.3,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0263822324004471/pdfft?md5=af4bde0a8c2d6d24815d48ab9ad9f494&pid=1-s2.0-S0263822324004471-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141484221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geometrically nonlinear bending analysis of laminated thin plates based on classical laminated plate theory and deep energy method 基于经典层压板理论和深能量法的层压薄板几何非线性弯曲分析
IF 6.3 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES Pub Date : 2024-06-25 DOI: 10.1016/j.compstruct.2024.118314
Zhong-Min Huang , Lin-Xin Peng

This paper establishes a geometrically nonlinear bending analysis framework using the deep energy method and the classical laminated plate theory (CLPT) for laminated plates. Inspired by the transfer learning technique, a load applied to a laminated plate can be divided into multiple load steps. The network parameters for the current load step, with the exception of the initial step, are initialized by inheriting values from their preceding steps. Including both von Kármán and Green-Lagrange strains, the plate strains are computed using the automatic differentiation and integrated along the thickness direction per laminate plate based on the constitutive theory. By combining the outputs of neural network, the external potential energy can be obtained, and the optimized network parameters are given by minimizing the total system potential energy of the laminated plate. In order to validate the proposed approach, several numerical examples are calculated, and the present solutions are compared with those given by the literature and the Finite Element Analysis (FEA). The results show that the proposed approach is indeed feasible, can reach high levels of precision under varying loads while offering a simplified calculation strategy.

本文利用深能量法和经典层压板理论(CLPT)为层压板建立了一个几何非线性弯曲分析框架。受迁移学习技术的启发,施加在层压板上的载荷可分为多个载荷步骤。当前负载步骤的网络参数(初始步骤除外)通过继承前一步骤的值进行初始化。包括 von Kármán 应变和格林-拉格朗日应变在内的板应变是通过自动微分计算得出的,并根据构成理论沿厚度方向对每个层压板进行积分。结合神经网络的输出,可以得到外部势能,并通过最小化层压板的总系统势能给出优化的网络参数。为了验证所提出的方法,计算了几个数值实例,并将目前的解决方案与文献和有限元分析(FEA)给出的解决方案进行了比较。结果表明,所提出的方法确实可行,能在不同载荷下达到很高的精度,同时提供了一种简化的计算策略。
{"title":"Geometrically nonlinear bending analysis of laminated thin plates based on classical laminated plate theory and deep energy method","authors":"Zhong-Min Huang ,&nbsp;Lin-Xin Peng","doi":"10.1016/j.compstruct.2024.118314","DOIUrl":"https://doi.org/10.1016/j.compstruct.2024.118314","url":null,"abstract":"<div><p>This paper establishes a geometrically nonlinear bending analysis framework using the deep energy method and the classical laminated plate theory (CLPT) for laminated plates. Inspired by the transfer learning technique, a load applied to a laminated plate can be divided into multiple load steps. The network parameters for the current load step, with the exception of the initial step, are initialized by inheriting values from their preceding steps. Including both von Kármán and Green-Lagrange strains, the plate strains are computed using the automatic differentiation and integrated along the thickness direction per laminate plate based on the constitutive theory. By combining the outputs of neural network, the external potential energy can be obtained, and the optimized network parameters are given by minimizing the total system potential energy of the laminated plate. In order to validate the proposed approach, several numerical examples are calculated, and the present solutions are compared with those given by the literature and the Finite Element Analysis (FEA). The results show that the proposed approach is indeed feasible, can reach high levels of precision under varying loads while offering a simplified calculation strategy.</p></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":null,"pages":null},"PeriodicalIF":6.3,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141484263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Isogeometric analysis of functionally graded panels using Bézier triangles 使用贝塞尔三角形对功能分级板进行等值分析
IF 6.3 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES Pub Date : 2024-06-25 DOI: 10.1016/j.compstruct.2024.118310
Francisco Davyd Pereira Silva, Elias Saraiva Barroso, Gabriel Braga Alves de Matos, Evandro Parente Jr., João Batista M. Sousa Jr.

Isogeometric Analysis is a numerical method that integrates the concepts of geometric modeling and structural analysis. It approximates the displacement field using the same basis functions employed by CAD systems to describe the structure’s geometry. This work proposes an isogeometric formulation for analysis of functionally graded panels based on rational Bézier triangles, allowing the exact geometry representation and automatic discretization of topologically complex models. The formulation is applied to the free vibration and stability analysis of functionally graded plates and curved panels. Monotonic convergence under mesh refinement was observed in all examples. Furthermore, results show that curved functionally graded panels display a complex nonlinear behavior and can present bifurcation buckling before reaching the limit load.

等时几何分析是一种融合了几何建模和结构分析概念的数值方法。它使用与 CAD 系统相同的基函数来近似位移场,以描述结构的几何形状。本研究提出了一种基于有理贝塞尔三角形的等几何公式,用于分析功能分级板,允许精确的几何表示和拓扑复杂模型的自动离散化。该公式适用于功能分级板和曲面板的自由振动和稳定性分析。在所有例子中都观察到了网格细化下的单调收敛。此外,结果表明,曲面功能分级板显示出复杂的非线性行为,并可能在达到极限载荷之前出现分叉屈曲。
{"title":"Isogeometric analysis of functionally graded panels using Bézier triangles","authors":"Francisco Davyd Pereira Silva,&nbsp;Elias Saraiva Barroso,&nbsp;Gabriel Braga Alves de Matos,&nbsp;Evandro Parente Jr.,&nbsp;João Batista M. Sousa Jr.","doi":"10.1016/j.compstruct.2024.118310","DOIUrl":"https://doi.org/10.1016/j.compstruct.2024.118310","url":null,"abstract":"<div><p>Isogeometric Analysis is a numerical method that integrates the concepts of geometric modeling and structural analysis. It approximates the displacement field using the same basis functions employed by CAD systems to describe the structure’s geometry. This work proposes an isogeometric formulation for analysis of functionally graded panels based on rational Bézier triangles, allowing the exact geometry representation and automatic discretization of topologically complex models. The formulation is applied to the free vibration and stability analysis of functionally graded plates and curved panels. Monotonic convergence under mesh refinement was observed in all examples. Furthermore, results show that curved functionally graded panels display a complex nonlinear behavior and can present bifurcation buckling before reaching the limit load.</p></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":null,"pages":null},"PeriodicalIF":6.3,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141484261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Composite Structures
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1