{"title":"Authentication of honey origin and harvesting year based on Raman spectroscopy and chemometrics","authors":"Maria David , Dana Alina Magdas","doi":"10.1016/j.talo.2024.100342","DOIUrl":null,"url":null,"abstract":"<div><p>The false declaration of honey authenticity requires the use of rapid and efficient analytical tools in order to be detected. In this study, the use of a green, rapid and emerging approach for food authentication, FT-Raman spectroscopy, proved to obtain reliable and efficient honey botanical and harvesting year differentiation models, when the spectroscopic data was processed by employing a supervised statistical method, namely Partial Least Squares Discriminant Analysis (PLS-DA). The peaks and bands present in the Raman spectra were discussed based on honey composition. In order to increase the efficiency of the models, different preprocessing methods were used and a variable reduction step was employed. The new authentication approach is capable of distinguishing among four botanical sources and two harvesting periods of honey with a correct prediction rate higher than 97 %. The Raman markers that proved to contribute the most to the discrimination were correlated with the honey composition.</p></div>","PeriodicalId":436,"journal":{"name":"Talanta Open","volume":"10 ","pages":"Article 100342"},"PeriodicalIF":4.1000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666831924000560/pdfft?md5=d7ace90d3b8d5eb095b6664660f69868&pid=1-s2.0-S2666831924000560-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666831924000560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The false declaration of honey authenticity requires the use of rapid and efficient analytical tools in order to be detected. In this study, the use of a green, rapid and emerging approach for food authentication, FT-Raman spectroscopy, proved to obtain reliable and efficient honey botanical and harvesting year differentiation models, when the spectroscopic data was processed by employing a supervised statistical method, namely Partial Least Squares Discriminant Analysis (PLS-DA). The peaks and bands present in the Raman spectra were discussed based on honey composition. In order to increase the efficiency of the models, different preprocessing methods were used and a variable reduction step was employed. The new authentication approach is capable of distinguishing among four botanical sources and two harvesting periods of honey with a correct prediction rate higher than 97 %. The Raman markers that proved to contribute the most to the discrimination were correlated with the honey composition.