A. Navas-Montilla, J. Guallart, P. Solán-Fustero, P. García-Navarro
{"title":"Exploring the potential of TENO and WENO schemes for simulating under-resolved turbulent flows in the atmosphere using Euler equations","authors":"A. Navas-Montilla, J. Guallart, P. Solán-Fustero, P. García-Navarro","doi":"10.1016/j.compfluid.2024.106349","DOIUrl":null,"url":null,"abstract":"<div><p>This paper focuses on the design and analysis of very high-order finite volume methods for the computation of simplified meso- and micro-scale atmospheric flows. In a dry atmosphere, these flows can be represented by the Euler equations with a gravitational source term. Two different approaches are considered here. While one of the approaches is fully conservative for the total energy, the other is formulated in a non-conservative form. The main focus of the paper is to analyze the performance of such models in combination with the traditional WENO reconstruction and the novel TENO reconstruction by examining the spectral properties of these reconstruction methods. The overarching goal is to determine whether the combination of these models and numerical schemes can be used to build an implicit Large Eddy Simulation framework, shedding light on their potential advantages or limitations in representing under-resolved atmospheric processes in the meso- and micro-scales.</p></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"280 ","pages":"Article 106349"},"PeriodicalIF":2.5000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0045793024001816/pdfft?md5=0b226165687261fb653604b60e4ac2f2&pid=1-s2.0-S0045793024001816-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793024001816","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper focuses on the design and analysis of very high-order finite volume methods for the computation of simplified meso- and micro-scale atmospheric flows. In a dry atmosphere, these flows can be represented by the Euler equations with a gravitational source term. Two different approaches are considered here. While one of the approaches is fully conservative for the total energy, the other is formulated in a non-conservative form. The main focus of the paper is to analyze the performance of such models in combination with the traditional WENO reconstruction and the novel TENO reconstruction by examining the spectral properties of these reconstruction methods. The overarching goal is to determine whether the combination of these models and numerical schemes can be used to build an implicit Large Eddy Simulation framework, shedding light on their potential advantages or limitations in representing under-resolved atmospheric processes in the meso- and micro-scales.
期刊介绍:
Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.