High-efficient complex eigen-solution algorithms for transcendental dynamic stiffness formulations of plate built-up structures with frequency-dependent viscoelastic models

IF 4.4 2区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Structures Pub Date : 2024-07-05 DOI:10.1016/j.compstruc.2024.107456
Xiao Liu , Xiang Liu , Tao Lu , Dalun Tang
{"title":"High-efficient complex eigen-solution algorithms for transcendental dynamic stiffness formulations of plate built-up structures with frequency-dependent viscoelastic models","authors":"Xiao Liu ,&nbsp;Xiang Liu ,&nbsp;Tao Lu ,&nbsp;Dalun Tang","doi":"10.1016/j.compstruc.2024.107456","DOIUrl":null,"url":null,"abstract":"<div><p>Two highly accurate and reliable eigen-solution techniques, the new homotopy perturbation method and the extended argument principle method, are proposed for analysing orthotropic viscoelastic plate built-up structures. These techniques are formulated to solve transcendental eigenvalue problems in modal analysis based on the analytical damped dynamic stiffness formulations. The homotopy perturbation method uses undamped real-valued eigenvalues and eigenvectors computed by the Wittrick-Williams algorithm as the exact initial solutions. The internal damping coefficient and external damping coefficient are set as convergence control parameters by using the homotopy method, and the initial solutions are updated through inverse iteration to efficiently obtain the final complex eigenvalues. Conversely, the extended argument principle method utilizes the dichotomy of mode count in the complex domain, based on the denominators of elemental dynamic stiffness matrices, to pinpoint complex eigenvalues. Validation against finite element solutions from COMSOL shows that while the extended argument principle method offers benchmark solutions, it is computationally intensive. In contrast, the proposed homotopy perturbation method presents a valuable tool in engineering applications due to its exceptional balance of accuracy and computational efficiency. This method facilitates rapid analyses and design parameter optimization within the context of viscoelastic plate structures.</p></div>","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045794924001858","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Two highly accurate and reliable eigen-solution techniques, the new homotopy perturbation method and the extended argument principle method, are proposed for analysing orthotropic viscoelastic plate built-up structures. These techniques are formulated to solve transcendental eigenvalue problems in modal analysis based on the analytical damped dynamic stiffness formulations. The homotopy perturbation method uses undamped real-valued eigenvalues and eigenvectors computed by the Wittrick-Williams algorithm as the exact initial solutions. The internal damping coefficient and external damping coefficient are set as convergence control parameters by using the homotopy method, and the initial solutions are updated through inverse iteration to efficiently obtain the final complex eigenvalues. Conversely, the extended argument principle method utilizes the dichotomy of mode count in the complex domain, based on the denominators of elemental dynamic stiffness matrices, to pinpoint complex eigenvalues. Validation against finite element solutions from COMSOL shows that while the extended argument principle method offers benchmark solutions, it is computationally intensive. In contrast, the proposed homotopy perturbation method presents a valuable tool in engineering applications due to its exceptional balance of accuracy and computational efficiency. This method facilitates rapid analyses and design parameter optimization within the context of viscoelastic plate structures.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用频率相关粘弹性模型的板式建筑结构超越动态刚度公式的高效复杂特征解算法
本文提出了两种高精度、高可靠性的特征值求解技术,即新的同调扰动法和扩展论证原理法,用于分析正交粘弹性板结构。这些技术的制定是为了解决模态分析中基于分析阻尼动态刚度公式的超越特征值问题。同调扰动法使用 Wittrick-Williams 算法计算的无阻尼实值特征值和特征向量作为精确的初始解。利用同调法设置内部阻尼系数和外部阻尼系数作为收敛控制参数,通过反迭代更新初始解,从而有效地获得最终的复特征值。相反,扩展论证原理方法则利用复域中的模态数二分法(基于元素动态刚度矩阵的分母)来精确定位复特征值。根据 COMSOL 的有限元解决方案进行的验证表明,虽然扩展论证原理法提供了基准解决方案,但其计算量很大。相比之下,拟议的同调扰动法在精确性和计算效率之间取得了出色的平衡,是工程应用中的宝贵工具。该方法有助于粘弹性板结构的快速分析和设计参数优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Structures
Computers & Structures 工程技术-工程:土木
CiteScore
8.80
自引率
6.40%
发文量
122
审稿时长
33 days
期刊介绍: Computers & Structures publishes advances in the development and use of computational methods for the solution of problems in engineering and the sciences. The range of appropriate contributions is wide, and includes papers on establishing appropriate mathematical models and their numerical solution in all areas of mechanics. The journal also includes articles that present a substantial review of a field in the topics of the journal.
期刊最新文献
Multi-material topology optimization of phononic crystal considering isotropic/anisotropic materials Energy-based homogenization method for lattice structures with generalized periodicity Design-informed generative modelling of skeletal structures using structural optimization Editorial Board Dynamic topology optimization of structure weakly coupled with two-phase flow
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1