Novel, diverse and ultra-high ferroelectric, piezoelectric and dielectric performances of Mn added La2Ti2O7-based ceramics for high-temperature applications
Nawishta Jabeen , Ahmad Hussain , Altaf Ur Rahman , Iqra Faiza , Sumbul , Salah M. El-Bahy
{"title":"Novel, diverse and ultra-high ferroelectric, piezoelectric and dielectric performances of Mn added La2Ti2O7-based ceramics for high-temperature applications","authors":"Nawishta Jabeen , Ahmad Hussain , Altaf Ur Rahman , Iqra Faiza , Sumbul , Salah M. El-Bahy","doi":"10.1016/j.ssi.2024.116637","DOIUrl":null,"url":null,"abstract":"<div><p>In the industry of high-temperature sensors and actuators, materials capable of delivering high ferroelectric, dielectric, and specifically stable/high piezoelectric performances above 1000 °C are in demand. Hence, perovskite-like layered structured (PLS) have gained popularity due to their high Curie temperature (<em>T</em><sub><em>C</em></sub>) and ferroelectric properties, but the low piezoelectric coefficient (<em>d</em><sub><em>33</em></sub>) at high temperature (>1000 °C) is the problem statement to be explored and improved. Herein this research, La<sub>1.97</sub>(LiCe)<sub>0.03</sub>Ti<sub>2</sub>O<sub>7</sub>:xwt%MnO<sub>2</sub> (LLCTO:xMn) with x = 0–0.3 ceramic series has been explored to study the ultra-high structural, ferroelectric, electric, dielectric, and piezoelectric properties. Among all compositions, LLCTO:0.2Mn ceramic has demonstrated ultra-high performances with remnant polarization (<em>P</em><sub><em>r</em></sub>) of ∼1.84 μC/cm<sup>2</sup>, piezoelectric co-efficient (<em>d</em><sub><em>33</em></sub>) of 9 pC/N, resistivity of ∼10<sup>11</sup> Ω.cm, relative dielectric constant (<em>ɛ</em><sub><em>r</em></sub>) of 46, and minor dielectric loss (tanδ) of 0.17 which are much improved compared to pure La<sub>2</sub>Ti<sub>2</sub>O<sub>7</sub> (LTO) and pristine La<sub>1.97</sub>(LiCe)<sub>0.03</sub>Ti<sub>2</sub>O<sub>7</sub> (LLCTO) ceramics. The LLCTO:0.2Mn ceramic has exhibited the high <em>T</em><sub><em>C</em></sub> of 1415 °C. Moreover, thermally stable multifunctional performances are measured where LLCTO:0.2Mn ceramic has demonstrated a high <em>d</em><sub><em>33</em></sub> of ∼8.5 pC/N at 1200 °C and resistivity of ∼2.4 × 10<sup>7</sup> Ω.cm even at 1000 °C, which are much better than the earlier reports. From the analysis, LLCTO:0.2Mn ceramic has demonstrated the potential to be utilized in high-temperature (>1000 °C) piezoelectric devices.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"414 ","pages":"Article 116637"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273824001851","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In the industry of high-temperature sensors and actuators, materials capable of delivering high ferroelectric, dielectric, and specifically stable/high piezoelectric performances above 1000 °C are in demand. Hence, perovskite-like layered structured (PLS) have gained popularity due to their high Curie temperature (TC) and ferroelectric properties, but the low piezoelectric coefficient (d33) at high temperature (>1000 °C) is the problem statement to be explored and improved. Herein this research, La1.97(LiCe)0.03Ti2O7:xwt%MnO2 (LLCTO:xMn) with x = 0–0.3 ceramic series has been explored to study the ultra-high structural, ferroelectric, electric, dielectric, and piezoelectric properties. Among all compositions, LLCTO:0.2Mn ceramic has demonstrated ultra-high performances with remnant polarization (Pr) of ∼1.84 μC/cm2, piezoelectric co-efficient (d33) of 9 pC/N, resistivity of ∼1011 Ω.cm, relative dielectric constant (ɛr) of 46, and minor dielectric loss (tanδ) of 0.17 which are much improved compared to pure La2Ti2O7 (LTO) and pristine La1.97(LiCe)0.03Ti2O7 (LLCTO) ceramics. The LLCTO:0.2Mn ceramic has exhibited the high TC of 1415 °C. Moreover, thermally stable multifunctional performances are measured where LLCTO:0.2Mn ceramic has demonstrated a high d33 of ∼8.5 pC/N at 1200 °C and resistivity of ∼2.4 × 107 Ω.cm even at 1000 °C, which are much better than the earlier reports. From the analysis, LLCTO:0.2Mn ceramic has demonstrated the potential to be utilized in high-temperature (>1000 °C) piezoelectric devices.
期刊介绍:
This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on:
(i) physics and chemistry of defects in solids;
(ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering;
(iii) ion transport measurements, mechanisms and theory;
(iv) solid state electrochemistry;
(v) ionically-electronically mixed conducting solids.
Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties.
Review papers and relevant symposium proceedings are welcome.