Xiaorui Jin , Yuan Chen , Xiaofen Liu , Lan Lan , Yunfei Sun , Meiling Wu , Kai-Ge Zhou
{"title":"Selective mass transport mediated by two-dimensional confined water: A comprehensive review","authors":"Xiaorui Jin , Yuan Chen , Xiaofen Liu , Lan Lan , Yunfei Sun , Meiling Wu , Kai-Ge Zhou","doi":"10.1016/j.flatc.2024.100708","DOIUrl":null,"url":null,"abstract":"<div><p>Confined mass transport based on two-dimensional (2D) materials breaks the trade-off effect between permeability and selectivity, significantly enhancing the efficiency of mass transport. However, the prevailing view that mass transport performance is primarily determined by the structural design of molecules or ions within channels and the regulation of channel walls has led to the neglect of surrounding hydration layers. Recent studies indicate that the interactions between confined water and transport substances, particularly the formation of hydration shells, significantly influence the mass transport process. Therefore, a thorough investigation of the behavior and properties of confined water, especially its presence, regulation methods, and the enhanced mechanisms of mass transport in 2D channels is particularly urgent and constitutes an indispensable research direction for the future development of materials science and engineering technologies. This review summarizes the latest progress on 2D confined water including its structure, properties, and behavior under natural conditions or environmental influences, the mechanisms enhancing mass transport, and regulatory approaches, as well as multiple applications such as membrane separation, drug delivery, and confined reactions. Lastly, we present instructive perspectives on the current challenges and future directions in the study of confined water.</p></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"47 ","pages":"Article 100708"},"PeriodicalIF":5.9000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlatChem","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452262724001028","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Confined mass transport based on two-dimensional (2D) materials breaks the trade-off effect between permeability and selectivity, significantly enhancing the efficiency of mass transport. However, the prevailing view that mass transport performance is primarily determined by the structural design of molecules or ions within channels and the regulation of channel walls has led to the neglect of surrounding hydration layers. Recent studies indicate that the interactions between confined water and transport substances, particularly the formation of hydration shells, significantly influence the mass transport process. Therefore, a thorough investigation of the behavior and properties of confined water, especially its presence, regulation methods, and the enhanced mechanisms of mass transport in 2D channels is particularly urgent and constitutes an indispensable research direction for the future development of materials science and engineering technologies. This review summarizes the latest progress on 2D confined water including its structure, properties, and behavior under natural conditions or environmental influences, the mechanisms enhancing mass transport, and regulatory approaches, as well as multiple applications such as membrane separation, drug delivery, and confined reactions. Lastly, we present instructive perspectives on the current challenges and future directions in the study of confined water.
期刊介绍:
FlatChem - Chemistry of Flat Materials, a new voice in the community, publishes original and significant, cutting-edge research related to the chemistry of graphene and related 2D & layered materials. The overall aim of the journal is to combine the chemistry and applications of these materials, where the submission of communications, full papers, and concepts should contain chemistry in a materials context, which can be both experimental and/or theoretical. In addition to original research articles, FlatChem also offers reviews, minireviews, highlights and perspectives on the future of this research area with the scientific leaders in fields related to Flat Materials. Topics of interest include, but are not limited to, the following: -Design, synthesis, applications and investigation of graphene, graphene related materials and other 2D & layered materials (for example Silicene, Germanene, Phosphorene, MXenes, Boron nitride, Transition metal dichalcogenides) -Characterization of these materials using all forms of spectroscopy and microscopy techniques -Chemical modification or functionalization and dispersion of these materials, as well as interactions with other materials -Exploring the surface chemistry of these materials for applications in: Sensors or detectors in electrochemical/Lab on a Chip devices, Composite materials, Membranes, Environment technology, Catalysis for energy storage and conversion (for example fuel cells, supercapacitors, batteries, hydrogen storage), Biomedical technology (drug delivery, biosensing, bioimaging)