{"title":"Using a trie-based approach for storage and retrieval of goal-oriented plans in an S1/S2 cognitive architecture","authors":"Massimo Cossentino, Giovanni Pilato","doi":"10.1016/j.cogsys.2024.101257","DOIUrl":null,"url":null,"abstract":"<div><p>In the last years, the System 1/System 2 cognitive architecture, proposed by psychologist Daniel Kahneman, raised the interest of many researchers in the field. <em>System 1</em> is an intuitive, automatic, and fast-thinking system working effortlessly, without conscious effort. <em>System 2</em> is a deliberate, analytical, and slower-thinking system employing conscious effort and attention. This work proposes an innovative approach that exploits techniques typical of information retrieval (the trie data structure) to efficiently encode the solutions’ repository at the border between System 2 and System 1. This repository stores the solutions (successful plans) the agent has already used and can re-enact to achieve the goals. System 2 conceives new plans and delegates System 1 to execute them. If the plan is successful (and so it becomes a solution), System 1 stores that in the repository to quickly retrieve any solution that may help fulfil the goals deliberated by System 2 in the future.</p></div>","PeriodicalId":55242,"journal":{"name":"Cognitive Systems Research","volume":"87 ","pages":"Article 101257"},"PeriodicalIF":2.1000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1389041724000512/pdfft?md5=90857dbbd82c5a305bde8800fccf4b48&pid=1-s2.0-S1389041724000512-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Systems Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389041724000512","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In the last years, the System 1/System 2 cognitive architecture, proposed by psychologist Daniel Kahneman, raised the interest of many researchers in the field. System 1 is an intuitive, automatic, and fast-thinking system working effortlessly, without conscious effort. System 2 is a deliberate, analytical, and slower-thinking system employing conscious effort and attention. This work proposes an innovative approach that exploits techniques typical of information retrieval (the trie data structure) to efficiently encode the solutions’ repository at the border between System 2 and System 1. This repository stores the solutions (successful plans) the agent has already used and can re-enact to achieve the goals. System 2 conceives new plans and delegates System 1 to execute them. If the plan is successful (and so it becomes a solution), System 1 stores that in the repository to quickly retrieve any solution that may help fulfil the goals deliberated by System 2 in the future.
期刊介绍:
Cognitive Systems Research is dedicated to the study of human-level cognition. As such, it welcomes papers which advance the understanding, design and applications of cognitive and intelligent systems, both natural and artificial.
The journal brings together a broad community studying cognition in its many facets in vivo and in silico, across the developmental spectrum, focusing on individual capacities or on entire architectures. It aims to foster debate and integrate ideas, concepts, constructs, theories, models and techniques from across different disciplines and different perspectives on human-level cognition. The scope of interest includes the study of cognitive capacities and architectures - both brain-inspired and non-brain-inspired - and the application of cognitive systems to real-world problems as far as it offers insights relevant for the understanding of cognition.
Cognitive Systems Research therefore welcomes mature and cutting-edge research approaching cognition from a systems-oriented perspective, both theoretical and empirically-informed, in the form of original manuscripts, short communications, opinion articles, systematic reviews, and topical survey articles from the fields of Cognitive Science (including Philosophy of Cognitive Science), Artificial Intelligence/Computer Science, Cognitive Robotics, Developmental Science, Psychology, and Neuroscience and Neuromorphic Engineering. Empirical studies will be considered if they are supplemented by theoretical analyses and contributions to theory development and/or computational modelling studies.