{"title":"Educational models for cognition: Methodology of modeling intellectual skills for intelligent tutoring systems","authors":"Oleg Sychev","doi":"10.1016/j.cogsys.2024.101261","DOIUrl":null,"url":null,"abstract":"<div><p>Automation of teaching people new skills requires modeling of human reasoning because human cognition involves active reasoning over the new subject domain to acquire skills that will later become automatic. The article presents Thought Process Trees — a language for modeling human reasoning that was created to facilitate the development of intelligent tutoring systems, which can perform the same reasoning that is expected of a student and find deficiencies in their line of thinking, providing explanatory messages and allowing them to learn from performance errors. The methodology of building trees which better reflect human learning is discussed, with examples of design choices during the modeling process and their consequences. The characteristics of educational modeling that impact building subject-domain models for intelligent tutoring systems are discussed. The trees were formalized and served as a basis for developing a framework for constructing intelligent tutoring systems. This significantly lowered the time required to build and debug a constraint-based subject-domain model. The framework has already been used to develop five intelligent tutoring systems and their prototypes and is being used to develop more of them.</p></div>","PeriodicalId":55242,"journal":{"name":"Cognitive Systems Research","volume":"87 ","pages":"Article 101261"},"PeriodicalIF":2.1000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Systems Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138904172400055X","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Automation of teaching people new skills requires modeling of human reasoning because human cognition involves active reasoning over the new subject domain to acquire skills that will later become automatic. The article presents Thought Process Trees — a language for modeling human reasoning that was created to facilitate the development of intelligent tutoring systems, which can perform the same reasoning that is expected of a student and find deficiencies in their line of thinking, providing explanatory messages and allowing them to learn from performance errors. The methodology of building trees which better reflect human learning is discussed, with examples of design choices during the modeling process and their consequences. The characteristics of educational modeling that impact building subject-domain models for intelligent tutoring systems are discussed. The trees were formalized and served as a basis for developing a framework for constructing intelligent tutoring systems. This significantly lowered the time required to build and debug a constraint-based subject-domain model. The framework has already been used to develop five intelligent tutoring systems and their prototypes and is being used to develop more of them.
期刊介绍:
Cognitive Systems Research is dedicated to the study of human-level cognition. As such, it welcomes papers which advance the understanding, design and applications of cognitive and intelligent systems, both natural and artificial.
The journal brings together a broad community studying cognition in its many facets in vivo and in silico, across the developmental spectrum, focusing on individual capacities or on entire architectures. It aims to foster debate and integrate ideas, concepts, constructs, theories, models and techniques from across different disciplines and different perspectives on human-level cognition. The scope of interest includes the study of cognitive capacities and architectures - both brain-inspired and non-brain-inspired - and the application of cognitive systems to real-world problems as far as it offers insights relevant for the understanding of cognition.
Cognitive Systems Research therefore welcomes mature and cutting-edge research approaching cognition from a systems-oriented perspective, both theoretical and empirically-informed, in the form of original manuscripts, short communications, opinion articles, systematic reviews, and topical survey articles from the fields of Cognitive Science (including Philosophy of Cognitive Science), Artificial Intelligence/Computer Science, Cognitive Robotics, Developmental Science, Psychology, and Neuroscience and Neuromorphic Engineering. Empirical studies will be considered if they are supplemented by theoretical analyses and contributions to theory development and/or computational modelling studies.