Biologically inspired architecture for the identification of ambiguous objects using scene associations

IF 2.1 3区 心理学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Cognitive Systems Research Pub Date : 2024-07-01 DOI:10.1016/j.cogsys.2024.101262
Ivan Axel Dounce, Félix Ramos
{"title":"Biologically inspired architecture for the identification of ambiguous objects using scene associations","authors":"Ivan Axel Dounce,&nbsp;Félix Ramos","doi":"10.1016/j.cogsys.2024.101262","DOIUrl":null,"url":null,"abstract":"<div><p>As humans, we have an excellent performance when perceiving the environment. In the artificial world, it is important for machines to perceive their environment so they can make correct decisions and act accordingly. An essential process to accomplish perception is to identify objects in a scene, but, as in reality, these objects can appear as ambiguous, and additionally, those objects are embedded into a particular scene. For our proposal, we created an architecture to identify ambiguous objects by using scene information to guide the identification process. The design is based on the human cortical systems that participate in object and scene recognition. In our study, we validate this proposal by analyzing a prior human experiment that demonstrates and quantifies the impact of scene information on ambiguous objects. Our findings demonstrate that employing the presented architecture on an object recognition task results in superior machine performance with familiar scenes, as opposed to unfamiliar or absent ones, consistent with human behavior.</p></div>","PeriodicalId":55242,"journal":{"name":"Cognitive Systems Research","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Systems Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389041724000561","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

As humans, we have an excellent performance when perceiving the environment. In the artificial world, it is important for machines to perceive their environment so they can make correct decisions and act accordingly. An essential process to accomplish perception is to identify objects in a scene, but, as in reality, these objects can appear as ambiguous, and additionally, those objects are embedded into a particular scene. For our proposal, we created an architecture to identify ambiguous objects by using scene information to guide the identification process. The design is based on the human cortical systems that participate in object and scene recognition. In our study, we validate this proposal by analyzing a prior human experiment that demonstrates and quantifies the impact of scene information on ambiguous objects. Our findings demonstrate that employing the presented architecture on an object recognition task results in superior machine performance with familiar scenes, as opposed to unfamiliar or absent ones, consistent with human behavior.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用场景关联识别模糊物体的生物灵感架构
作为人类,我们在感知环境方面有着出色的表现。在人工世界中,机器感知环境非常重要,这样它们才能做出正确的决定并采取相应的行动。完成感知的一个基本过程是识别场景中的物体,但在现实中,这些物体可能看起来模棱两可,此外,这些物体还嵌入到特定场景中。在我们的建议中,我们创建了一个架构,通过使用场景信息来引导识别过程,从而识别模糊的物体。该设计基于参与物体和场景识别的人类大脑皮层系统。在我们的研究中,我们通过分析先前的人体实验验证了这一建议,该实验展示并量化了场景信息对模糊物体的影响。我们的研究结果表明,在物体识别任务中采用所提出的架构后,机器在熟悉场景中的表现要优于不熟悉或不存在的场景,这与人类的行为一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cognitive Systems Research
Cognitive Systems Research 工程技术-计算机:人工智能
CiteScore
9.40
自引率
5.10%
发文量
40
审稿时长
>12 weeks
期刊介绍: Cognitive Systems Research is dedicated to the study of human-level cognition. As such, it welcomes papers which advance the understanding, design and applications of cognitive and intelligent systems, both natural and artificial. The journal brings together a broad community studying cognition in its many facets in vivo and in silico, across the developmental spectrum, focusing on individual capacities or on entire architectures. It aims to foster debate and integrate ideas, concepts, constructs, theories, models and techniques from across different disciplines and different perspectives on human-level cognition. The scope of interest includes the study of cognitive capacities and architectures - both brain-inspired and non-brain-inspired - and the application of cognitive systems to real-world problems as far as it offers insights relevant for the understanding of cognition. Cognitive Systems Research therefore welcomes mature and cutting-edge research approaching cognition from a systems-oriented perspective, both theoretical and empirically-informed, in the form of original manuscripts, short communications, opinion articles, systematic reviews, and topical survey articles from the fields of Cognitive Science (including Philosophy of Cognitive Science), Artificial Intelligence/Computer Science, Cognitive Robotics, Developmental Science, Psychology, and Neuroscience and Neuromorphic Engineering. Empirical studies will be considered if they are supplemented by theoretical analyses and contributions to theory development and/or computational modelling studies.
期刊最新文献
A mathematical formulation of learner cognition for personalised learning experiences Identification of the emotional component of inner pronunciation: EEG-ERP study Towards emotion-aware intelligent agents by utilizing knowledge graphs of experiences Exploring the impact of virtual reality flight simulations on EEG neural patterns and task performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1