T. Butini , F. Barco , M.G. Cascone , R. Ciolini , M. Quattrocchi , E. Rosellini , J.A. Torres Novaes , M.N. Xavier , S. de Souza Lalic , F. d’Errico
{"title":"Biodosimetry of ionizing radiations at different LET levels through cytogenetic endpoints in Allium cepa meristems","authors":"T. Butini , F. Barco , M.G. Cascone , R. Ciolini , M. Quattrocchi , E. Rosellini , J.A. Torres Novaes , M.N. Xavier , S. de Souza Lalic , F. d’Errico","doi":"10.1016/j.radmeas.2024.107223","DOIUrl":null,"url":null,"abstract":"<div><p>- This paper aims to enhance our understanding of the effects of ionizing radiation using radiobiology and biodosimetry techniques applied to living plant organisms. Plants are particularly suitable for this purpose as they are highly sensitive to detecting potential genotoxic agents in the environment and their use allows us to avoid using animals in research in compliance with the 3R principle. Currently, the onion (<em>Allium cepa</em>) is recognized as a valid model for the analysis of environmental pollutants but has been relatively unexplored as an indicator of radiation exposure. In this study, analyses of the genotoxicity of X and alpha radiation were conducted using the micronucleus test and mitotic index analysis. Our results indicate that <em>Allium cepa</em> can be considered a valid alternative model to animal use for assessing the effects of ionizing radiation. In particular, it was found that alpha radiation caused significant damage, as evidenced by an increased number of micronuclei, which was 20 times higher compared to X-ray radiation. This was further confirmed through the observation of the effective dose parameter, as determined by the analysis of various weight factors associated with different types of radiation.</p></div>","PeriodicalId":21055,"journal":{"name":"Radiation Measurements","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1350448724001719/pdfft?md5=1bc4ad8857cfbc3775bf29e81e034f39&pid=1-s2.0-S1350448724001719-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation Measurements","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350448724001719","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
- This paper aims to enhance our understanding of the effects of ionizing radiation using radiobiology and biodosimetry techniques applied to living plant organisms. Plants are particularly suitable for this purpose as they are highly sensitive to detecting potential genotoxic agents in the environment and their use allows us to avoid using animals in research in compliance with the 3R principle. Currently, the onion (Allium cepa) is recognized as a valid model for the analysis of environmental pollutants but has been relatively unexplored as an indicator of radiation exposure. In this study, analyses of the genotoxicity of X and alpha radiation were conducted using the micronucleus test and mitotic index analysis. Our results indicate that Allium cepa can be considered a valid alternative model to animal use for assessing the effects of ionizing radiation. In particular, it was found that alpha radiation caused significant damage, as evidenced by an increased number of micronuclei, which was 20 times higher compared to X-ray radiation. This was further confirmed through the observation of the effective dose parameter, as determined by the analysis of various weight factors associated with different types of radiation.
期刊介绍:
The journal seeks to publish papers that present advances in the following areas: spontaneous and stimulated luminescence (including scintillating materials, thermoluminescence, and optically stimulated luminescence); electron spin resonance of natural and synthetic materials; the physics, design and performance of radiation measurements (including computational modelling such as electronic transport simulations); the novel basic aspects of radiation measurement in medical physics. Studies of energy-transfer phenomena, track physics and microdosimetry are also of interest to the journal.
Applications relevant to the journal, particularly where they present novel detection techniques, novel analytical approaches or novel materials, include: personal dosimetry (including dosimetric quantities, active/electronic and passive monitoring techniques for photon, neutron and charged-particle exposures); environmental dosimetry (including methodological advances and predictive models related to radon, but generally excluding local survey results of radon where the main aim is to establish the radiation risk to populations); cosmic and high-energy radiation measurements (including dosimetry, space radiation effects, and single event upsets); dosimetry-based archaeological and Quaternary dating; dosimetry-based approaches to thermochronometry; accident and retrospective dosimetry (including activation detectors), and dosimetry and measurements related to medical applications.