{"title":"On Convergence of the Iteratively Preconditioned Gradient-Descent (IPG) Observer","authors":"Kushal Chakrabarti;Nikhil Chopra","doi":"10.1109/LCSYS.2024.3416337","DOIUrl":null,"url":null,"abstract":"This letter considers the observer design problem for discrete-time nonlinear dynamical systems with sampled measurements. The recently proposed Iteratively Preconditioned Gradient-Descent (IPG) observer, a Newton-type observer, has been empirically shown to have improved robustness against measurement noise than the prominent nonlinear observers, a property that other Newton-type observers lack. However, no theoretical guarantees on the convergence of the IPG observer were provided. This letter presents a rigorous convergence analysis of the IPG observer for a class of nonlinear systems in deterministic settings, proving its local linear convergence to the actual trajectory. The assumptions are standard in the existing literature of Newton-type observers, and the analysis further confirms the relation of IPG observer with Newton observer, which was only hypothesized earlier.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10561620/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This letter considers the observer design problem for discrete-time nonlinear dynamical systems with sampled measurements. The recently proposed Iteratively Preconditioned Gradient-Descent (IPG) observer, a Newton-type observer, has been empirically shown to have improved robustness against measurement noise than the prominent nonlinear observers, a property that other Newton-type observers lack. However, no theoretical guarantees on the convergence of the IPG observer were provided. This letter presents a rigorous convergence analysis of the IPG observer for a class of nonlinear systems in deterministic settings, proving its local linear convergence to the actual trajectory. The assumptions are standard in the existing literature of Newton-type observers, and the analysis further confirms the relation of IPG observer with Newton observer, which was only hypothesized earlier.