Reachability Analysis of Neural Network Control Systems With Tunable Accuracy and Efficiency

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS IEEE Control Systems Letters Pub Date : 2024-06-17 DOI:10.1109/LCSYS.2024.3415471
Yuhao Zhang;Hang Zhang;Xiangru Xu
{"title":"Reachability Analysis of Neural Network Control Systems With Tunable Accuracy and Efficiency","authors":"Yuhao Zhang;Hang Zhang;Xiangru Xu","doi":"10.1109/LCSYS.2024.3415471","DOIUrl":null,"url":null,"abstract":"The surging popularity of neural networks in controlled systems underscores the imperative for formal verification to ensure the reliability and safety of such systems. Existing set propagation-based approaches for reachability analysis in neural network control systems encounter challenges in scalability and flexibility. This letter introduces a novel tunable hybrid zonotope-based method for computing both forward and backward reachable sets of neural network control systems. The proposed method incorporates an optimization-based network reduction technique and an activation pattern-based hybrid zonotope propagation approach for ReLU-activated feedforward neural networks. Furthermore, it enables two tunable parameters to balance computational complexity and approximation accuracy. A numerical example is provided to illustrate the performance and tunability of the proposed approach.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10558853/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The surging popularity of neural networks in controlled systems underscores the imperative for formal verification to ensure the reliability and safety of such systems. Existing set propagation-based approaches for reachability analysis in neural network control systems encounter challenges in scalability and flexibility. This letter introduces a novel tunable hybrid zonotope-based method for computing both forward and backward reachable sets of neural network control systems. The proposed method incorporates an optimization-based network reduction technique and an activation pattern-based hybrid zonotope propagation approach for ReLU-activated feedforward neural networks. Furthermore, it enables two tunable parameters to balance computational complexity and approximation accuracy. A numerical example is provided to illustrate the performance and tunability of the proposed approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
精度和效率可调的神经网络控制系统的可达性分析
神经网络在控制系统中的应用日益普及,这凸显了为确保此类系统的可靠性和安全性而进行正式验证的必要性。现有的基于集合传播的神经网络控制系统可达性分析方法在可扩展性和灵活性方面遇到了挑战。这篇文章介绍了一种新颖的基于可调混合区角的方法,用于计算神经网络控制系统的前向和后向可达集。所提出的方法结合了基于优化的网络缩减技术和基于激活模式的混合区位传播方法,适用于 ReLU 激活的前馈神经网络。此外,它还采用了两个可调参数来平衡计算复杂性和近似精度。本文提供了一个数值示例,以说明所提方法的性能和可调性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
期刊最新文献
Rationality of Learning Algorithms in Repeated Normal-Form Games Impact of Opinion on Disease Transmission With Waterborne Pathogen and Stubborn Community Numerical and Lyapunov-Based Investigation of the Effect of Stenosis on Blood Transport Stability Using a Control-Theoretic PDE Model of Cardiovascular Flow Almost Sure Convergence and Non-Asymptotic Concentration Bounds for Stochastic Mirror Descent Algorithm Opinion Dynamics With Set-Based Confidence: Convergence Criteria and Periodic Solutions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1