{"title":"Reachability Analysis of Neural Network Control Systems With Tunable Accuracy and Efficiency","authors":"Yuhao Zhang;Hang Zhang;Xiangru Xu","doi":"10.1109/LCSYS.2024.3415471","DOIUrl":null,"url":null,"abstract":"The surging popularity of neural networks in controlled systems underscores the imperative for formal verification to ensure the reliability and safety of such systems. Existing set propagation-based approaches for reachability analysis in neural network control systems encounter challenges in scalability and flexibility. This letter introduces a novel tunable hybrid zonotope-based method for computing both forward and backward reachable sets of neural network control systems. The proposed method incorporates an optimization-based network reduction technique and an activation pattern-based hybrid zonotope propagation approach for ReLU-activated feedforward neural networks. Furthermore, it enables two tunable parameters to balance computational complexity and approximation accuracy. A numerical example is provided to illustrate the performance and tunability of the proposed approach.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10558853/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The surging popularity of neural networks in controlled systems underscores the imperative for formal verification to ensure the reliability and safety of such systems. Existing set propagation-based approaches for reachability analysis in neural network control systems encounter challenges in scalability and flexibility. This letter introduces a novel tunable hybrid zonotope-based method for computing both forward and backward reachable sets of neural network control systems. The proposed method incorporates an optimization-based network reduction technique and an activation pattern-based hybrid zonotope propagation approach for ReLU-activated feedforward neural networks. Furthermore, it enables two tunable parameters to balance computational complexity and approximation accuracy. A numerical example is provided to illustrate the performance and tunability of the proposed approach.