Next-generation bioinformatics: An ultrafast and user-friendly tool for phylogenomic data exploration

IF 5.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Ecology Resources Pub Date : 2024-07-06 DOI:10.1111/1755-0998.13993
Kin Onn Chan
{"title":"Next-generation bioinformatics: An ultrafast and user-friendly tool for phylogenomic data exploration","authors":"Kin Onn Chan","doi":"10.1111/1755-0998.13993","DOIUrl":null,"url":null,"abstract":"<p>With increasingly large genomic datasets, even routine bioinformatic tasks can be arduous, computationally demanding, and time-consuming. Additionally, most bioinformatic programs do not have a graphical user interface (GUI) and thus, require users to be minimally competent in command-line. These impediments present significant economic and technological barriers for practitioners who do not have access to advanced computational resources and support. In this issue of Molecular Ecology Resources, Handika and Esselstyn (2024) developed an ultrafast and memory-efficient bioinformatic tool, SEGUL, that performs common manipulations and calculations of summary statistics on phylogenomic datasets. SEGUL has two main features that distinguish it from other bioinformatic programs: (1) it is based on the recently emergent, high-performance programming language Rust, and (2) it has a GUI written using Flutter, a cross-platform programming framework that also supports mobile operating systems (mobile iOS, iPadOS and Android). By leveraging and combining the power of Rust and Flutter, SEGUL achieves significantly faster computation times and lower memory usage across different platforms and CPU architectures compared to similar programs. The unique and innovative features of SEGUL pave the way for a new era of bioinformatics that can be more energy-efficient, inclusive, and available to a broader swathe of users.</p>","PeriodicalId":211,"journal":{"name":"Molecular Ecology Resources","volume":"24 7","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology Resources","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1755-0998.13993","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

With increasingly large genomic datasets, even routine bioinformatic tasks can be arduous, computationally demanding, and time-consuming. Additionally, most bioinformatic programs do not have a graphical user interface (GUI) and thus, require users to be minimally competent in command-line. These impediments present significant economic and technological barriers for practitioners who do not have access to advanced computational resources and support. In this issue of Molecular Ecology Resources, Handika and Esselstyn (2024) developed an ultrafast and memory-efficient bioinformatic tool, SEGUL, that performs common manipulations and calculations of summary statistics on phylogenomic datasets. SEGUL has two main features that distinguish it from other bioinformatic programs: (1) it is based on the recently emergent, high-performance programming language Rust, and (2) it has a GUI written using Flutter, a cross-platform programming framework that also supports mobile operating systems (mobile iOS, iPadOS and Android). By leveraging and combining the power of Rust and Flutter, SEGUL achieves significantly faster computation times and lower memory usage across different platforms and CPU architectures compared to similar programs. The unique and innovative features of SEGUL pave the way for a new era of bioinformatics that can be more energy-efficient, inclusive, and available to a broader swathe of users.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
下一代生物信息学:用于系统发生组数据探索的超快和用户友好型工具。
随着基因组数据集越来越庞大,即使是常规的生物信息任务也会变得艰巨、计算要求高且耗时。此外,大多数生物信息程序都没有图形用户界面(GUI),因此要求用户具备最低限度的命令行能力。这些障碍为无法获得先进计算资源和支持的从业人员带来了巨大的经济和技术障碍。在本期的《分子生态学资源》(Molecular Ecology Resources)杂志上,Handika 和 Esselstyn 开发了一种超快、内存效率高的生物信息学工具 SEGUL,它可以对系统发生组数据集进行常见的操作和汇总统计计算。SEGUL 有两个区别于其他生物信息学程序的主要特点:(1)它基于最近出现的高性能编程语言 Rust,(2)它的图形用户界面是用 Flutter 编写的,Flutter 是一个跨平台编程框架,也支持移动操作系统(移动 iOS、iPadOS 和 Android)。通过利用并结合Rust和Flutter的强大功能,SEGUL在不同平台和CPU架构下的计算时间和内存使用量都比同类程序要快得多。SEGUL独特而创新的功能为生物信息学的新时代铺平了道路,使其更节能、更具包容性,并为更广泛的用户所使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Ecology Resources
Molecular Ecology Resources 生物-进化生物学
CiteScore
15.60
自引率
5.20%
发文量
170
审稿时长
3 months
期刊介绍: Molecular Ecology Resources promotes the creation of comprehensive resources for the scientific community, encompassing computer programs, statistical and molecular advancements, and a diverse array of molecular tools. Serving as a conduit for disseminating these resources, the journal targets a broad audience of researchers in the fields of evolution, ecology, and conservation. Articles in Molecular Ecology Resources are crafted to support investigations tackling significant questions within these disciplines. In addition to original resource articles, Molecular Ecology Resources features Reviews, Opinions, and Comments relevant to the field. The journal also periodically releases Special Issues focusing on resource development within specific areas.
期刊最新文献
PhyloForge: Unifying Micro- and Macroevolution With Comprehensive Genomic Signals. Temporal Variability in Effective Size ( N ̂ e $$ {\hat{N}}_e $$ ) Identifies Potential Sources of Discrepancies Between Mark Recapture and Close Kin Mark Recapture Estimates of Population Abundance. Chromosomal-Level Genome Suggests Adaptive Constraints Leading to the Historical Population Decline in an Extremely Endangered Plant. Development of SNP Panels from Low-Coverage Whole Genome Sequencing (lcWGS) to Support Indigenous Fisheries for Three Salmonid Species in Northern Canada. Probe Capture Enrichment Sequencing of amoA Genes Improves the Detection of Diverse Ammonia-Oxidising Archaeal and Bacterial Populations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1