Integration of De Novo Chromosome-Level Genome and Population Resequencing of Peganum (Nitrariaceae): A Case Study of Speciation and Evolutionary Trajectories in Arid Central Asia.
{"title":"Integration of De Novo Chromosome-Level Genome and Population Resequencing of Peganum (Nitrariaceae): A Case Study of Speciation and Evolutionary Trajectories in Arid Central Asia.","authors":"Hao Xu, Yun Han, Xiaofeng Chi, Jingya Yu, Mingze Xia, Shuang Han, Yu Niu, Faqi Zhang, Shilong Chen","doi":"10.1111/1755-0998.14078","DOIUrl":null,"url":null,"abstract":"<p><p>Natural hybridization is a significant driving force in plant evolution and speciation. Understanding the genetic mechanism and dynamic evolutionary trajectories of divergence between species and hybrids remains a central goal in evolutionary biology. Here, we examined the genetic divergence of Peganum and their intermittent and hybrid entities (IHEs) from large-scale sympatric and allopatric regions. We sequenced the genomes of Peganum from the Arid Central Asia (ACA) region and its surrounding areas, discovering that the origin of Peganum could be traced to the Hexi Corridor in eastern Central Asia, where migration led to geographic and environmental isolation, giving rise to new species based on natural selection. Different Peganum species, exhibiting excellent dispersal abilities, migrated to the same regions and underwent hybridization. The descendant species of Peganum inherited and developed adaptive traits from parent species through gene flow and introgression, particularly in DNA repair and wax layer formation, leading to the speciation of the IHEs. This study clarified the transition stages in hybrid speciation and identified the Mixing-Isolation-Mixing cycles (MIM) model as a speciation framework suitable for Peganum, marking the initial identification of this unique evolutionary model in the ACA region.</p>","PeriodicalId":211,"journal":{"name":"Molecular Ecology Resources","volume":" ","pages":"e14078"},"PeriodicalIF":5.5000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology Resources","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/1755-0998.14078","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Natural hybridization is a significant driving force in plant evolution and speciation. Understanding the genetic mechanism and dynamic evolutionary trajectories of divergence between species and hybrids remains a central goal in evolutionary biology. Here, we examined the genetic divergence of Peganum and their intermittent and hybrid entities (IHEs) from large-scale sympatric and allopatric regions. We sequenced the genomes of Peganum from the Arid Central Asia (ACA) region and its surrounding areas, discovering that the origin of Peganum could be traced to the Hexi Corridor in eastern Central Asia, where migration led to geographic and environmental isolation, giving rise to new species based on natural selection. Different Peganum species, exhibiting excellent dispersal abilities, migrated to the same regions and underwent hybridization. The descendant species of Peganum inherited and developed adaptive traits from parent species through gene flow and introgression, particularly in DNA repair and wax layer formation, leading to the speciation of the IHEs. This study clarified the transition stages in hybrid speciation and identified the Mixing-Isolation-Mixing cycles (MIM) model as a speciation framework suitable for Peganum, marking the initial identification of this unique evolutionary model in the ACA region.
期刊介绍:
Molecular Ecology Resources promotes the creation of comprehensive resources for the scientific community, encompassing computer programs, statistical and molecular advancements, and a diverse array of molecular tools. Serving as a conduit for disseminating these resources, the journal targets a broad audience of researchers in the fields of evolution, ecology, and conservation. Articles in Molecular Ecology Resources are crafted to support investigations tackling significant questions within these disciplines.
In addition to original resource articles, Molecular Ecology Resources features Reviews, Opinions, and Comments relevant to the field. The journal also periodically releases Special Issues focusing on resource development within specific areas.