Olivia Morgan Lapenta , Gabriel Gaudencio Rêgo , Paulo Sérgio Boggio
{"title":"Transcranial electrical stimulation for procedural learning and rehabilitation","authors":"Olivia Morgan Lapenta , Gabriel Gaudencio Rêgo , Paulo Sérgio Boggio","doi":"10.1016/j.nlm.2024.107958","DOIUrl":null,"url":null,"abstract":"<div><p>Procedural learning is the acquisition of motor and non-motor skills through a gradual process that increases with practice. Impairments in procedural learning have been consistently demonstrated in neurodevelopmental, neurodegenerative, and neuropsychiatric disorders. Considering that noninvasive brain stimulation modulates brain activity and boosts neuroplastic mechanisms, we reviewed the effects of coupling transcranial direct current stimulation (tDCS) with training methods for motor and non-motor procedural learning to explore tDCS potential use as a tool for enhancing implicit learning in healthy and clinical populations. The review covers tDCS effects over i. motor procedural learning, from basic to complex activities; ii. non-motor procedural learning; iii. procedural rehabilitation in several clinical populations. We conclude that targeting the primary motor cortex and prefrontal areas seems the most promising for motor and non-motor procedural learning, respectively. For procedural rehabilitation, the use of tDCS is yet at an early stage but some effectiveness has been reported for implicit motor and memory learning. Still, systematic comparisons of stimulation parameters and target areas are recommended for maximising the effectiveness of tDCS and its robustness for procedural rehabilitation.</p></div>","PeriodicalId":19102,"journal":{"name":"Neurobiology of Learning and Memory","volume":"213 ","pages":"Article 107958"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1074742724000698/pdfft?md5=9e0202b7be748978a78e32f87ae7458c&pid=1-s2.0-S1074742724000698-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Learning and Memory","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1074742724000698","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Procedural learning is the acquisition of motor and non-motor skills through a gradual process that increases with practice. Impairments in procedural learning have been consistently demonstrated in neurodevelopmental, neurodegenerative, and neuropsychiatric disorders. Considering that noninvasive brain stimulation modulates brain activity and boosts neuroplastic mechanisms, we reviewed the effects of coupling transcranial direct current stimulation (tDCS) with training methods for motor and non-motor procedural learning to explore tDCS potential use as a tool for enhancing implicit learning in healthy and clinical populations. The review covers tDCS effects over i. motor procedural learning, from basic to complex activities; ii. non-motor procedural learning; iii. procedural rehabilitation in several clinical populations. We conclude that targeting the primary motor cortex and prefrontal areas seems the most promising for motor and non-motor procedural learning, respectively. For procedural rehabilitation, the use of tDCS is yet at an early stage but some effectiveness has been reported for implicit motor and memory learning. Still, systematic comparisons of stimulation parameters and target areas are recommended for maximising the effectiveness of tDCS and its robustness for procedural rehabilitation.
期刊介绍:
Neurobiology of Learning and Memory publishes articles examining the neurobiological mechanisms underlying learning and memory at all levels of analysis ranging from molecular biology to synaptic and neural plasticity and behavior. We are especially interested in manuscripts that examine the neural circuits and molecular mechanisms underlying learning, memory and plasticity in both experimental animals and human subjects.