Atomic-scale terahertz time-domain spectroscopy

IF 32.3 1区 物理与天体物理 Q1 OPTICS Nature Photonics Pub Date : 2024-07-04 DOI:10.1038/s41566-024-01467-2
V. Jelic, S. Adams, M. Hassan, K. Cleland-Host, S. E. Ammerman, T. L. Cocker
{"title":"Atomic-scale terahertz time-domain spectroscopy","authors":"V. Jelic, S. Adams, M. Hassan, K. Cleland-Host, S. E. Ammerman, T. L. Cocker","doi":"10.1038/s41566-024-01467-2","DOIUrl":null,"url":null,"abstract":"Lightwave-driven terahertz scanning tunnelling microscopy (THz-STM) is capable of exploring ultrafast dynamics across a wide range of materials with ångström resolution (10−10 m). In contrast to scanning near-field optical microscopy, where photons scattered by the tip apex are analysed to access the local dielectric function on the nanoscale, THz-STM uses a strong-field single-cycle terahertz pulse to drive an ultrafast current across a tunnel junction, thereby probing the local density of electronic states. Yet, the terahertz field in a THz-STM junction may also be spectrally modified by the local electromagnetic response of the sample. Here we demonstrate atomic-scale terahertz time-domain spectroscopy by combining waveform sampling with terahertz scanning tunnelling spectroscopy to study a single gallium arsenide surface defect, which exhibits a strongly localized terahertz resonance and resembles the elusive DX centre. These results are based on a generally applicable and self-consistent approach for terahertz near-field waveform acquisition in a tunnel junction that can distinguish local sample properties from effects due to terahertz pulse coupling, enabling comprehensive near-field microscopy on the atomic scale. Ångström-scale terahertz time-domain spectroscopy is demonstrated in a lightwave-driven scanning tunnelling microscope. Employing a metal surface as a reference, local terahertz near-fields are used for spectroscopy of a single atom resonator defect in doped gallium arsenide.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":null,"pages":null},"PeriodicalIF":32.3000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41566-024-01467-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Lightwave-driven terahertz scanning tunnelling microscopy (THz-STM) is capable of exploring ultrafast dynamics across a wide range of materials with ångström resolution (10−10 m). In contrast to scanning near-field optical microscopy, where photons scattered by the tip apex are analysed to access the local dielectric function on the nanoscale, THz-STM uses a strong-field single-cycle terahertz pulse to drive an ultrafast current across a tunnel junction, thereby probing the local density of electronic states. Yet, the terahertz field in a THz-STM junction may also be spectrally modified by the local electromagnetic response of the sample. Here we demonstrate atomic-scale terahertz time-domain spectroscopy by combining waveform sampling with terahertz scanning tunnelling spectroscopy to study a single gallium arsenide surface defect, which exhibits a strongly localized terahertz resonance and resembles the elusive DX centre. These results are based on a generally applicable and self-consistent approach for terahertz near-field waveform acquisition in a tunnel junction that can distinguish local sample properties from effects due to terahertz pulse coupling, enabling comprehensive near-field microscopy on the atomic scale. Ångström-scale terahertz time-domain spectroscopy is demonstrated in a lightwave-driven scanning tunnelling microscope. Employing a metal surface as a reference, local terahertz near-fields are used for spectroscopy of a single atom resonator defect in doped gallium arsenide.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
原子尺度太赫兹时域光谱学
光波驱动的太赫兹扫描隧穿显微镜(THz-STM)能够以 10-10 米的分辨率探索各种材料的超快动力学。与扫描近场光学显微镜相比,太赫兹扫描隧道显微镜使用强场单周期太赫兹脉冲驱动超快电流穿过隧道结,从而探测局部电子状态密度。然而,太赫兹-STM 结中的太赫兹场也可能因样品的局部电磁响应而发生光谱变化。在这里,我们通过将波形采样与太赫兹扫描隧道光谱相结合,展示了原子尺度的太赫兹时域光谱,研究了单个砷化镓表面缺陷,该缺陷表现出强烈的局部太赫兹共振,类似于难以捉摸的 DX 中心。这些结果基于一种在隧道结中获取太赫兹近场波形的普遍适用且自洽的方法,该方法可将局部样品特性与太赫兹脉冲耦合效应区分开来,从而在原子尺度上实现全面的近场显微分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Photonics
Nature Photonics 物理-光学
CiteScore
54.20
自引率
1.70%
发文量
158
审稿时长
12 months
期刊介绍: Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection. The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays. In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.
期刊最新文献
Attosecond transient interferometry Minute-scale Schrödinger-cat state of spin-5/2 atoms Nonlinear optical colloidal metacrystals Light–matter interactions driven by lasers at highest intensities Optical biosensors towards the clinic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1