Molecular cation and low-dimensional perovskite surface passivation in perovskite solar cells

IF 49.7 1区 材料科学 Q1 ENERGY & FUELS Nature Energy Pub Date : 2024-07-04 DOI:10.1038/s41560-024-01529-3
Sam Teale, Matteo Degani, Bin Chen, Edward H. Sargent, Giulia Grancini
{"title":"Molecular cation and low-dimensional perovskite surface passivation in perovskite solar cells","authors":"Sam Teale, Matteo Degani, Bin Chen, Edward H. Sargent, Giulia Grancini","doi":"10.1038/s41560-024-01529-3","DOIUrl":null,"url":null,"abstract":"The deposition of large ammonium cations onto perovskite surfaces to passivate defects and reduce contact recombination has enabled exceptional efficiency and stability in perovskite solar cells. These ammonium cations can either assemble as a thin molecular layer at the perovskite surface or induce the formation of a low-dimensional (usually two-dimensional) perovskite capping layer on top of the three-dimensional perovskite. The formation of these two different structures is often overlooked by researchers, although they impact differently on device operation. In this Review, we seek to distinguish between these two passivation layers. We consider the conditions needed for the formation of low-dimensional perovskite and the electronic properties of the two structures. We discuss the mechanisms by which each method improves photovoltaic efficiency and stability. Finally, we summarize the knowledge gaps that need to be addressed to better understand and optimize ammonium cation-based passivation strategies. Ammonium salts are used to passivate defects in perovskite solar cells, yet they can either assemble as molecular layers or induce the formation of low-dimensional perovskites. Teale et al. review and discuss the formation and properties of these two different structures and their impact on devices.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":null,"pages":null},"PeriodicalIF":49.7000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Energy","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41560-024-01529-3","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The deposition of large ammonium cations onto perovskite surfaces to passivate defects and reduce contact recombination has enabled exceptional efficiency and stability in perovskite solar cells. These ammonium cations can either assemble as a thin molecular layer at the perovskite surface or induce the formation of a low-dimensional (usually two-dimensional) perovskite capping layer on top of the three-dimensional perovskite. The formation of these two different structures is often overlooked by researchers, although they impact differently on device operation. In this Review, we seek to distinguish between these two passivation layers. We consider the conditions needed for the formation of low-dimensional perovskite and the electronic properties of the two structures. We discuss the mechanisms by which each method improves photovoltaic efficiency and stability. Finally, we summarize the knowledge gaps that need to be addressed to better understand and optimize ammonium cation-based passivation strategies. Ammonium salts are used to passivate defects in perovskite solar cells, yet they can either assemble as molecular layers or induce the formation of low-dimensional perovskites. Teale et al. review and discuss the formation and properties of these two different structures and their impact on devices.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
过氧化物太阳能电池中的分子阳离子和低维过氧化物表面钝化
将大分子铵阳离子沉积到过氧化物表面以钝化缺陷和减少接触重组,使过氧化物太阳能电池具有极高的效率和稳定性。这些铵阳离子既可以在过氧化物表面形成薄分子层,也可以在三维过氧化物顶部形成低维(通常为二维)过氧化物盖层。这两种不同结构的形成往往被研究人员忽视,尽管它们对设备运行的影响不同。在本综述中,我们试图区分这两种钝化层。我们考虑了形成低维包晶石所需的条件以及这两种结构的电子特性。我们讨论了每种方法提高光伏效率和稳定性的机制。最后,我们总结了为更好地理解和优化基于铵阳离子的钝化策略而需要解决的知识空白。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Energy
Nature Energy Energy-Energy Engineering and Power Technology
CiteScore
75.10
自引率
1.10%
发文量
193
期刊介绍: Nature Energy is a monthly, online-only journal committed to showcasing the most impactful research on energy, covering everything from its generation and distribution to the societal implications of energy technologies and policies. With a focus on exploring all facets of the ongoing energy discourse, Nature Energy delves into topics such as energy generation, storage, distribution, management, and the societal impacts of energy technologies and policies. Emphasizing studies that push the boundaries of knowledge and contribute to the development of next-generation solutions, the journal serves as a platform for the exchange of ideas among stakeholders at the forefront of the energy sector. Maintaining the hallmark standards of the Nature brand, Nature Energy boasts a dedicated team of professional editors, a rigorous peer-review process, meticulous copy-editing and production, rapid publication times, and editorial independence. In addition to original research articles, Nature Energy also publishes a range of content types, including Comments, Perspectives, Reviews, News & Views, Features, and Correspondence, covering a diverse array of disciplines relevant to the field of energy.
期刊最新文献
A wind of change in sustainability The role of policy and module manufacturing learning in industrial decarbonization by small modular reactors The impact of interfacial quality and nanoscale performance disorder on the stability of alloyed perovskite solar cells A nationally determined contribution framework for energy transition minerals Transparency is key for energy and environment philanthropy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1